ATTACHMENT H. BIORETENTION / BIOFILTRATION DESIGN CRITERIA

Note: A significant portion of the information in this appendix has been copied verbatim from the *Ventura County Technical Guidance Manual*, Updated 2011, and modified to reflect recent changes to the bioretention/biofiltration soil media specifications as adopted by the California Regional Water Quality Control Board, San Francisco Region, on November 28, 2011, Order No. R2-2011-083, Attachment L. Permittees can submit alternate Bioretention/Biofiltration Design Criteria subject to Executive Officer approval.

1. Geometry

- **a.** Bioretention/biofiltration areas shall be sized to capture and treat the design with an 18inch maximum ponding depth. *The intention is that the ponding depth be limited to a depth that will allow for a healthy vegetation layer.*
- **b.** Minimum planting soil depth should be 2 feet, although 3 feet is preferred. *The intention is that the minimum planting soil depth should provide a beneficial root zone for the chosen plant palette and adequate water storage for the SWQDv.*
- **c.** A gravel storage layer below the bioretention/biofiltraton soil media is required as necessary to provide adequate temporary storage to retain the SWQDv and to promote infiltration.

2. Drainage

- **a.** Bioretention and biofiltration BMPs should be designed to drain below the planting soil in less than 48 hours and completely drain in less than 96 hours. *The intention is that soils must be allowed to dry out periodically in order to restore hydraulic capacity needed to receive flows from subsequent storms, maintain infiltration rates, maintain adequate soil oxygen levels for healthy soil biota and vegetation, and to provide proper soil conditions for biodegradation and retention of pollutants.*
- **b.** Biofiltration BMPs are designed and constructed with an underdrain. The underdrain is preferably placed near the top of the gravel storage area to promote incidental infiltration and enhanced nitrogen removal. However, if *in-situ*, underlying soils do not provide sufficient drainage, the underdrain may need to be placed lower in the gravel storage area (within 6 inches of the bottom) to prevent the unit from holding stagnant water for extended periods of time. At many sites, clay soils will drain sufficiently fast, particularly if they are not compacted. Observing soil moisture and surface conditions in the days following a wet period may provide sufficient information for making this decision and may be more directly applicable than *in situ* or laboratory testing of soil characteristics¹.

3. Overflow

An overflow device is required at the 18-inch ponding depth. The following, or equivalent, should be provided:

a. A vertical PVC pipe (SDR 35) to act as an overflow riser.

¹ Dan Cloak, Dan Cloak Environmental Consulting to Tom Dalziel, Contra Costa County, February 22, 2011.

b. The overflow riser(s) should be 6 inches or greater in diameter, so it can be cleaned without damage to the pipe.

The inlet to the riser should be at the ponding depth (18 inches for fenced bioretention areas and 6 inches for areas that are not fenced), and be capped with a spider cap to exclude floating mulch and debris. Spider caps should be screwed in or glued, i.e., not removable.

4. Integrated Water Quality/ Flow Reduction/Resources Management Criteria

- **a.** When calculating the capacity of an infiltration system, each Permittee shall account for the 24-hour infiltration assuming that the soil is saturated. Infiltration BMPs shall be limited to project sites where the in-situ soil or the amended on-site soils have a demonstrated infiltration rate under saturated conditions of no less than 0.3 inch per hour.
- **b.** Bioretention BMPs shall be designed to accommodate the minimum design flow at a surface loading rate of 5 inches per hour and no greater than 12 inches per hour, and shall have a total volume, including pore spaces and pre-filter detention volume of no less than the SWQDv.
- **c.** If rainwater harvested for use in irrigation is to be credited toward the total volume of storm water runoff retained on-site, each Permittee shall require the project proponent to conduct a conservative (assuming reasonable worst-case scenarios) assessment of water demand during the wet-weather season. This volume will be referred to as the "reliable" estimate of irrigation demand. The portion of water to be credited as retained on-site for use in irrigation shall not exceed the reliable estimate of irrigation demand.
- **d.** Harvested rainwater must be stored in a manner that precludes the breeding of mosquitoes or other vectors or with a draw down not to exceed 96 hours.
- **e.** When evaluating the potential for on-site retention, each Permittee shall consider the maximum potential for evapotranspiration from green roofs and rainfall harvest and use.
- f. Project requirements shall address at a minimum the potential use of harvested rainwater for non-potable uses including toilet flushing, laundry, and cooling water makeup water. If the municipal, building or county health code(s) does not allow such use of harvested rainwater, each Permittee shall develop a model ordinance and submit it to the city council or County Supervisors for consideration within 24 months after the Order effective date. The model ordinances shall be based on the International Association of Plumbing and Mechanical Officials' (IAPMO's) Green Plumbing and Mechanical Code Supplement to the 2012 National Standard Plumbing Code, or similar guidance to ensure the safe and effective use of harvested rainwater, separate from the existing provisions, if any, for reclaimed wastewater. California is in the process of adopting its 2012 update to the Uniform Plumbing Code that incorporates the IAPMO Green Plumbing and Mechanical Code Supplement. If the State of California update incorporates the IAPMO Green Plumbing and Mechanical Code Supplement, Permittees are not required to adopt a mode ordinance addressing the potential use of harvested rainwater for non-potable uses including toilet flushing, laundry, and cooling water makeup water.

5. Hydraulic Restriction Layers

Infiltration pathways may need to be restricted due to the close proximity of roads, foundations, or other infrastructure. A geomembrane liner, or other equivalent water proofing, may be placed along the vertical walls to reduce lateral flows. This liner should have a minimum thickness of 30 mils. Generally, waterproof barriers should not be placed on the bottom of the biofiltration unit, as this would prevent incidental infiltration which is important to meeting the required pollutant load reduction.

6. Planting/Storage Media Specifications

- **a.** The planting media placed in the cell should achieve a long-term, in-place infiltration rate of at least 5 inches per hour. Higher infiltration rates of up to 12 inches per hour are permissible. Bioretention/biofiltration soil shall retain sufficient moisture to support vigorous plant growth.
- **b.** Planting media should consist of 60 to 80% fine sand and 20 to 40% compost.
- c. Sand should be free of wood, waste, coating such as clay, stone dust, carbonate, etc. or any other deleterious material. All aggregate passing the No. 200 sieve size should be non-plastic. Sand for bioretention should be analyzed by an accredited lab using #200, #100, #40, #30, #16, #8, #4, and 3/8 sieves (ASTM D 422 or as approved by the local permitting authority) and meet the following gradation (Note: all sands complying with ASTM C33 for fine aggregate comply with the gradation requirements provided in Table H-1):

	Percent Passing by Weight		
Sieve Size ASTM D422	Minimum	Maximum	
3 /8 inch	100	100	
No. 4	90	100	
No. 8	70	100	
No. 16	40	95	
No. 30	15	70	
No. 40	5	55	
No. 110	0	15	
No. 200	0	5	

Table H-1. Sand Texture Specifications

Note: The gradation of the sand component of the media is believed to be a major factor in the hydraulic conductivity of the media mix. If the desired hydraulic conductivity of the media cannot be achieved within the specified proportions of sand and compost (#2), then it may be necessary to utilize sand at the coarser end of the range specified in above ("minimum" column).

d. Compost should be a well decomposed, stable, weed free organic matter source derived from waste materials including yard debris, wood wastes, or other organic materials not including manure or biosolids meeting standards developed by the US Composting Council (USCC). The product shall be certified through the USCC Seal of Testing Assurance (STA) Program (a compost testing and information disclosure program). Compost quality should be verified via a lab analysis to be:

- Feedstock materials shall be specified and include one or more of the following: landscape/yard trimmings, grass clippings, food scraps, and agricultural crop residues.
- Organic matter: 35-75% dry weight basis.
- Carbon and Nitrogen Ratio: 15:1 < C:N < 25:1
- Maturity/Stability: shall have dark brown color and a soil-like odor. Compost exhibiting a sour or putrid smell, containing recognizable grass or leaves, or is hot (120 F) upon delivery or rewetting is not acceptable.
- Toxicity: any one of the following measures is sufficient to indicate non-toxicity:
 - NH4:NH3 < 3
 - Ammonium < 500 ppm, dry weight basis
 - Seed Germination > 80% of control
 - Plant trials > 80% of control
 - Solvita® > 5 index value
- Nutrient content:
 - Total Nitrogen content 0.9% or above preferred
 - Total Boron should be <80 ppm, soluble boron < 2.5 ppm
- Salinity: < 6.0 mmhos/cm
- pH between 6.5 and 8 (may vary with plant palette)
- Compost for bioretention should be analyzed by an accredited lab using #200, 1/4 inch, 1/2 inch, and 1 inch sieves (ASTM D 422) and meet the gradation described in Table H-2:

ſ	1 avie 11-2.	Composi	Texture	-			
	Table H-2.	Compost	Toyturo	Snacifi	nation	ne	

	Percent Passing by Weight		
Sieve Size ASTM D422	Minimum	Maximum	
1 inch	99	100	
1/2 inch	90	100	
1/4 inch	40	90	
#200	2	10	

Tests should be sufficiently recent to represent the actual material that is anticipated to be delivered to the site. If processes or sources used by the supplier have changed significantly since the most recent testing, new tests should be requested.

Note: the gradation of compost used in bioretention/biofiltratation media is believed to play an important role in the saturated hydraulic conductivity of the media. To achieve a higher saturated hydraulic conductivity, it may be necessary to utilize compost at the coarser end of this range ("minimum" column). The percent passing the #200 sieve (fines) is believed to be the most important factor in hydraulic conductivity.

In addition, a coarser compost mix provides more heterogeneity of the bioretention media, which is believed to be advantageous for more rapid development of soil structure needed to support health biological processes. This may be an advantage for plant establishment with lower nutrient and water input.

e. Bioretention/Biofiltration soils not meeting the above criteria shall be evaluated on a case by case basis. Alternative bioretention soil shall meet the following specification:

"Soils for bioretention facilities shall be sufficiently permeable to infiltrate runoff at a minimum rate of 5 inches per hour during the life of the facility, and provide sufficient retention of moisture and nutrients to support healthy vegetation." The following steps shall be followed by the Permittees to verify that alternative soil mixes meet the specification:

- Submittals The applicant must submit to the Permittee for approval:
 - A sample of mixed bioretention/biofiltration soil.
 - Certification from the soil supplier or an accredited laboratory that the bioretention/biofiltration soil meets the requirements of this specification.
 - Certification from an accredited geotechnical testing laboratory that the bioretention/biofiltration soil has an infiltration rate of between 5 and 12 inches per hour.
 - Organic content test results of mixed bioretention/biofiltration soil. Organic content test shall be performed in accordance with by Testing Methods for the Examination of Compost and Composting (TMECC) 05.07A, "Loss-On-Ignition Organic Matter Method".
 - Organic Grain size analysis results of mixed bioretention/biofiltration soil performed in accordance with ASTM D 422, Standard Test Method for Particle Size Analysis of Soils.
 - A description of the equipment and methods used to mix the sand and compost to produce the bioretention/biofiltration soil.
- The name of the testing laboratory(s) and the following information:
 - Contact person(s)
 - Address(s)
 - Phone contact(s)
 - email address(s)
 - Qualifications of laboratory(s), and personnel including date of current
 - Certification by STA, ASTM, or approved equal.
- Bioretention/biofiltration soils shall be analyzed by an accredited lab using #200, and 1/2" inch sieves (ASTM D 422 or as approved by municipality), and meet the gradation described in Table H-3).

Table H-3. Alternative Bioretention/Biofiltration Soil Texture Specifications

	Percent Passing by Weight		
Sieve Size ASTM D422	Minimum	Maximum	
1/2 inch	97	100	
200	2	5	

- Bioretention/biofiltration soils shall be analyzed by an accredited geotechnical lab for the following tests:
 - Moisture density relationships (compaction tests) shall be conducted on bioretention soil. Bioretention/biofiltration soil for the permeability test shall be compacted to 85 to 90 percent of the maximum dry density (ASTM D1557).
 - Constant head permeability testing in accordance with ASTM D2434 shall be conducted on a minimum of two samples with a 6-inch mold and vacuum saturation.

7. Mulch for Bioretention/Biofiltration Facilities

Mulch is recommended for the purpose of retaining moisture, preventing erosion and minimizing weed growth. Projects subject to the State's Model Water Efficiency Landscaping Ordinance (or comparable local ordinance) will be required to provide at least two inches of mulch. Aged mulch, also called compost mulch, reduces the ability of weeds to establish, keeps soil moist, and replenishes soil nutrients. Aged mulch can be obtained through soil suppliers or directly from commercial recycling yards. It is recommended to apply 1" to 2" of composted mulch, once a year, preferably in June following weeding

8. Plants

- **a.** Plant materials should be tolerant of summer drought, ponding fluctuations, and saturated soil conditions for 48 to 96 hours.
- **b.** It is recommended that a minimum of three types of tree, shrubs, and/or herbaceous groundcover species be incorporated to protect against facility failure due to disease and insect infestations of a single species.
- **c.** Native plant species and/or hardy cultivars that are not invasive and do not require chemical inputs should be used to the maximum extent practicable.

References

California Regional Water Quality Control Board, San Francisco Bay Region. 2011. Municipal Regional Stormwater Permit (Order No. R2-2011-0083, Attachment L). Adopted November 28, 2011.

Dan Cloak, Dan Cloak Environmental Consulting to Tom Dalziel, Contra Costa County, February 22, 2011.<<u>http://www.cccleanwater.org/c3-guidebook.html</u>>. Accessed on January 31, 2012.

Geosyntec Consultants and Larry Walker Associates. 2011. *Ventura County Technical Guidance Manual for Stormwater Quality Control Measures, Manual Update 2011. Appendix D.* Prepared for the Ventura Countywide Stormwater Quality Management Program. July 13, 2011.