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Abstract 

The photochemical grid model, UAM-V, has been used by regulatory agencies to make decisions concerning emissions 
controls, based on studies of the July 1995 ozone episode in the eastern US. The current research concerns the effect of the 
uncertainties in UAM-V input variables (emissions, initial and boundary conditions, meteorological variables, and 
chemical reactions) on the uncertainties in UAM-V ozone predictions. Uncertainties of 128 input variables have been 
estimated and most range from about 20% to a factor of two. 100 Monte Carlo runs, each with new resampled values of 
each of the 128 input variables, have been made for given sets of median emissions assumptions. Emphasis is on the 
maximum hourly-averaged ozone concentration during the 12-14 July 1995 period. The distribution function of the 100 
Monte Carlo predicted domain-wide maximum ozone concentrations is consistently close to log-normal with a 95% 
uncertainty range extending over plus and minus a factor of about 1.6 from the median. Uncertainties in ozone 
predictions are found to be most strongly correlated with uncertainties in the N02 photolysis rate. Also important are 
wind speed and direction, relative humidity, cloud cover, and biogenic VOC emissions. Differences in median predicted 
maximum ozone concentrations for three alternate emissions control assumptions were investigated, with the result that 
(1) the suggested year-2007 emissions changes would likely be effective in reducing concentrations from those for the 
year-1995 actual emissions, that (2) an additional 50% NOx emissions reductions would likely be effective in further 
reducing concentrations, and that (3) an additional 50% VOC emission reductions may not be effective in further 
reducing concentrations. ~) 2001 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Regulatory agencies are proceeding with use of photo­
chemical grid models to make decisions concerning the 
specific magnitudes of NOX and voe emissions 
reductions that are required in order to reduce concen­
trations of ozone (see OTAG, 1997; EPA, 1998). There is 
also a question whether reductions in NOX or voe 
emissions are more effective in reducing maximum ozone 
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concentrations. The current research program is int­
ended to provide information to assist this decision pro­
cess, by providing estimates of uncertainty ranges on the 
results of emissions management outcomes simulated by 
a photochemical grid model (UAM-V) used in a regula­
tory setting. The results of the uncertainty analysis also 
allow an assessment of the input variables that have the 
strongest influence on the model predictions of ozone, 
thus assisting in prioritizing future research efforts 
towards the variables of most importance. 

Of course, it is one problem to estimate the uncertain­
ties in model predictions, and it is quite another problem 
to decide what to do with this information in the decision 
process. Currently the EPA is attempting to take model 
uncertainty into account, at least implicitly, through use 
of a "relative response factor" in their draft guidance on 
the use of modeling in attainment demonstrations. This 
approach recognizes that the models' predictions of rela­
tive changes in maximum ozone concentrations due to 
changes in emissions may be more accurate than the 
models' predictions of absolute magnitudes of maximum 
ozone concentrations. This is a first step towards ac­
counting for model uncertainty. The results of Monte 
Carlo uncertainly studies, such as the exercise described 
in this paper, should allow a more detailed rationale to be 
developed. 

Hanna et al. (1997, 1998) addressed these objectives by 
developing and applying a preliminary Monte Carlo 
uncertainly methodology for assessing the effects of un­
certainties in input variables on predictions of the 
UAM-IV regional photochemical grid model. These two 
papers analyzed uncertainties in UAM-IV runs on the 
180 km by 230 km New York City domain for the stale 
implementation plan (SIP) modeling exercise carried out 
for the 6-8 July 1988 episode. Because of the promising 
results from these Monte Carlo runs, it was decided to 
expand the analysis to a scenario of current regulatory 
interest - the UAM-V (SAI, 1996) model applications to 
the so-called ozone transport assessment group (OTAG, 
1997; EPA, 1998) domain for the July 1995 ozone epi­
sode. The exercise is based on the OTAG "year-1995" 
emissions and on the projected OTAG "year-2007" emis­
sions, which have been used by OT AG to set specific 
emissions limits. The OT AG domain, which covers the 
eastern 1 of the US, is many times larger than the 
180 km x 230 km New York City domain studied by 
Hanna et al. (1998). Fig. 1 contains a map of the OTAG 
domain with 12 km grid resolution, which was used in the 
current study, and also indicates 11 subdomains (shaded) 
which were analyzed by us separately in order to deter­
mine if the results varied with geographic location. 

2. Approaches to sensitivity and uncertainty analysis 

There has been much recent research on the sensitivities, 
the uncertainties, and the evaluation of environmental 

Fig. 1. Map of ozone transport assessment group (OT AG) 
12 km geographic domain used for UA M-V model applications. 
The 11 shaded areas represent sub-domains which were ana­
lyzed separately. 

models. Beck el al. (1997) provided an overview of evalu­
ations and uncertainties of environmental models, with 
emphasis on water quality models. They stressed the 
need to specify a hypothesis or question to be answered 
by the model, and point out the three major alternatives 
to sensitivity/uncertainty analysis: (1) first-order error 
analysis (sometimes called sensitivity or "small perturba­
tion" analysis); (2) brute-force Monte Carlo uncertainty 
analysis, and (3) response surface evaluation. 

Because of its ease of use and easy interpretation, there 
exist many examples of sensitivity analysis applied to 
photochemical grid models. Seigneur et al. (1981) esti­
mated the sensitivities of an urban model to variations in 
input data. Milford et al. (1992) and Seefeld and 
Stockwell (1999) applied the direct decoupled method 
(DDM) of sensitivity analysis, with emphasis on variations 
in chemical rate constants. Seefeld and Stockwell (1999) 
used first-order sensitivity analysis to look at differences 
between time-constant and time-variable rate constants, 
showing that it was important to account for the time 
variability. Yang et al. (1997) studied the uncertainties in 
incremental reactivities of voes and the fast direct sensi­
tmty analysis of multidimensional photochemical 
grid models. Sallelli (1999) pointed out that a global sensi­
tivity analysis is preferred over a "one-at-a-time" (OAT) 
sensitivity analysis, since the latter applies only to a 
reduced portion of the total space of solutions. Carmichael 
et al. (1997) suggested the use of an automatic differenti­
ation code (ADIFOR), which allows the derivatives 
(i.e., the sensitivity coefficients) to be directly solved for in 
a set of governing equations. Winner et al. (1995) and 
Dabdub et al. (1999) showed that the ozone predictions 
are especially sensitive to the inflow boundary conditions 
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in Los Angeles and the San Joaquin Valley, respectively. 
Hass et al. (1997) carried out a sensitivity study of four 
European long-range transport and dispersion models, 
finding factors of two to three differences in the sensitivi­
ties of the different models to variations in emissions. The 
limitation of local sensitivity analysis is that it applies 
only in the neighborhood of the nominal parameter 
values. Since photochemical processes are often non-lin­
ear, the magnitude and even the sign of the sensitivity 
coefficients may vary as the nominal parameter values 
vary. 

At the other extreme from simple "one-at-a-time" sen­
sitivity studies, the response surface method (Tatang 
et al., 1997) attempts to fit orthogonal polynomials to the 
input conditions and the predictions of numerical geo­
physical models. Of course it is necessary to run the 
models a sufficient number of times to have enough data 
to develop the response surfaces. It is claimed that 25 to 
60 times fewer runs are needed than for a Monte Carlo 
simple random sampling (SRS) exercise. Nevertheless, 
the response surface simply amounts to a "model of 
a model" and therefore is susceptible to problems asso­
ciated with scenarios outside of the range of parameters 
used to generate the data for deriving the model. 

There has been a rapid growth in the application of 
Monte Carlo uncertainty analysis methods to atmo­
spheric transport and dispersion models. This "brute­
force" method, described by lAEA (1989), NCRP (1996) 
and Beck et al. (1997), is computer-intensive because it 
requires many model runs (generally on the order of 100 
or more). However, because of the exponential growth of 
computer speed and storage, it is now possible to easily 
carry out 100 or more Monte Carlo runs with a complex 
photochemical grid model such as UAM-V (SAI, 1996) 
applied to a large domain on the order of 10,000 
(lOOx 100) horizontal grid cells. One of the first applica­
tions of Monte Carlo uncertainty analysis to photochem­
istry was the study of relations between stratospheric 
ozone and chlorine reported by Stolarski et al. (1978). 
Alcamo and Bartnicki (1987) used Monte Carlo methods 
to study the uncertainties in sulfur deposition predicted 
by the EMEF-W model in Europe. They found that it is 
more important lo specify the width (i.e., the standard 
deviation) rather than the shape of the probability den­
sity function (pdf) of the input variables. Gao et al. (1996) 
applied Monte Carlo uncertainty analysis to the chem­
ical rate parameters. Deuel et al. (1998) studied the uncer­
tainties of the UAM-V model using Monte Carlo 
methods; however, the uncertainty ranges that they as­
sumed for the input variables (vertical resolution, vertical 
diffusivity, Plume-in-Grid method, land-use, chemical re­
action rates, and emissions) were a factor of three or more 
less than those recommended by the experts in the study 
by Hanna et al. (1998) and in the current study. Bergin et 
al. (1999) applied Monte Carlo methods with latin hyper­
cube sampling (LHS) to a Lagrangian photochemical 

air pollution model (i.e., not a grid model) in Southern 
California. 

3. Expert elicitation process and resulting uncertainty 
estimates 

The first step in the Monte Carlo uncertainty analysis 
is to estimate the uncertainties in model input variables, 
which is difficult because there is little specific informa­
tion on this subject in the literature for the complete 
spectrum of inputs (e.g., initial and boundary conditions, 
emissions components, meteorological variables, photo­
lysis rates, and chemical rate constants). When this is the 
case, Morgan and Henrion (1990) suggest that it is ap­
propriate to carry out an expert elicitation where "ex­
perts" are asked to give estimates of uncertainties based 
on their experience. The earlier phase of the research 
(Hanna et al., 1998) depended on advice from ten model 
experts to assess the uncertainties in UAM-IV model 
input variables. The current research improved upon this 
process by attempting to reach about 100 experts via 
a web page where the experts could enter their estimates 
of U AM-V model input uncertainties. As a first step, the 
UAM-Vinput parameters to be varied were identified by 
studying the model documentation (SAI, 1996) and by 
reviewing reports on UAM-V applications to the OTAG 
domain for the July 1995 episode (e.g., OTAG, 1997; 
EPA, 1998). As a second step, an expert elicitation pro­
cess was carried out, from which the distribution func­
tions (shapes and key parameters such as median and 
variance) for each input variable could be estimated. The 
medians for the 128 input variables were taken from the 
OTAG base runs for year-1995 emissions and for projec­
ted year-2007 emissions. 

Even though 100 experts were contacted, only about 
20 of them filled in the requested information on the web 
page. It was found that better information could be 
obtained by meeting with groups of experts at several 
different laboratories. One reason for the minimal writ­
ten response may be that many photochemical modeling 
experts have not thought much about uncertainties in 
input parameters and therefore the estimates are largely 
based on intuition. 

Although most experts agree that it may be important 
to account for correlations among some input variables, 
not much information is available on such correlations. 
For example, there are surely some implicit correlations 
among some chemical rate constants that should be 
maintained so that the 94-equation chemical mechanism 
will produce results that agree with observations in envir­
onmental chambers. Furthermore, there should be a 
balance or correlation among boundary concentrations 
and emissions so that reasonable ozone concentration 
predictions are made. However, it is difficult to translate 
these general concerns about correlations into specific 
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suggestions concerning the magnitudes of the correla­
tions. Consequently no correlations were used in the 
current application. 

Another problem with the expert elicitation process is 
that it is difficult to find agreement on how the uncertain­
ties of the eight meteorological input variables (e.g., wind 
speed, wind direction, and cloud cover) can be adequate­
ly accounted for. Tbe major concern is tbat all photo­
chemical grid models are driven by the outputs of 
diagnostic or prognostic meteorological models, which 
impose dynamical constraints such as mass continuity. If 
the input wind speed and direction were allowed to vary 
randomly and independently at several monitoring sites 
at a given hour, there would be spurious mass convergen­
ces and divergences that would arise. This would lead to 
unrealistic build-up of pollutants in some areas and re­
moval of pollutants in other areas. Therefore there would 
be a need to apply a diagnostic or prognostic meteoro­
logical model to each new and independent group of 
randomly generated wind observations in order to adjust 
the wind fields to assure that tbe mass-continuity cri­
terion is satisfied. Because of the great effort involved in 
rerunning a diagnostic or prognostic meteorological 
model each time a new set of randomly generated winds 
is prescribed, our approach bas been to vary all wind 
speeds uniformly across the entire domain, tbus assuring 
mass-continuity is maintained. Another approach could 
be to make use of available alternate meteorological 
model runs made by other groups; however, this method 
does not adequately sample the full range of variability. 
Future research should focus on better methods for ac­
counting for variability in meteorological inputs, such as 
applying the Monte Carlo uncertainty methodology to 
the diagnostic or prognostic meteorological models 
themselves. 

Tbe distribution functions for most UAM-V input 
variables were assumed to be log-normal, as found for 
most environmental geophysical variables. The excep­
tions are wind direction, ambient temperature, relative 
humidity, and cloud cover, which are assumed to 
have normal distributions. The experts were asked to 
give estimates of the uncertainty range that would 
include 95% of the possible values (i.e., from the 2.5th 
percentile to the 97.5tb percentile of tbe cumulative dis­
tribution function (CDF)). For normal distributions, the 
standard deviation then equals about± of this range. For 
log-normal distributions, the uncertainties were usually 
expressed as "plus and minus a factor of Y" for variables 
witb large ranges such as plus and minus a factor of 2 or 
3. For variables with smaller ranges, the uncertainty was 
usually expressed as ·'plus and minus Z percent", which 
can be considered equivalent to "plus and minus a factor 
of (Y = 1.0 + Z/100)". For a log-normal distribution, the 
standard deviation of ln(X), where Xis the dimensional 
value of the physical variable, equals 0.5 ln( Y). For 
example, the input initial ozone concentration, C0 ,;, is 

assumed to have an uncertainly of plus and minus a fac­
tor of 3 (encompassing 95% of possible values). Therefore 
the standard deviation of ln ( C 0 , ;) is 0.5 ln(3) = 0.55. 

A list of the input variables, their 95% uncertainty 
ranges, their assumed distribution functions (all are 
either log-normal or normal), and the standard devi­
ations of tbe natural logarithm of the input variable (for 
log-normal distributions) or tbe input variable itself (for 
normal distributions) are given in Table 1. To save space, 
only the range, median, and mode of the uncertainties of 
the 94 carbon bond (CB)-IV chemical rate constants are 
listed. More detailed justifications for tbe uncertainty 
estimates for the six photolysis rates and the 94 chemical 
reaction rates are given by Frey (1998). The uncertainty 
estimates for many of the chemical reaction rates are 
based on information published in papers by Atkinson 
and Lloyd (1984), Thompson and Stewart (1991), De­
More et al. (1994), Gao et al. (1995), and Russell et al. 
(1995), as well as guidance from several atmospheric 
chemists. Note that there is a factor of two uncertainly in 
all tbe photolysis rates and a median factor of 1.8 uncer­
tainty in tbe 94 chemical rate constants. However, for 
many input parameters, the data required to estimate the 
uncertainties are not available. 

The six "photolysis rates" are associated or linked witb 
six of tbe 94 chemical reactions. Of particular interest is 
the N02 photolysis rate, which is associated or linked 
with reaction 1: N02 -->NO+ 0. During our study we 
frequently encountered confusion concerning the differ­
ences between tbe uncertainties in the photolysis rates 
and the uncertainties in the reaction rates. Tbe difference 
can be explained by considering that, for each photolysis 
reaction, there are two separately modeled sources of 
uncertainly. One source of uncertainty, in the photolysis 
rate, is related to cloud cover, ozone column, etc., whicb 
leads to uncertainty in the estimate of actinic flux and, 
hence, provides a distribution of nominal photolysis 
rates. The other source of uncertainty in, for example, the 
chemical reaction N02 --> hv--> NO+ 0, is related to 
absorption cross section and quantum yield. This leads 
to additional uncertainty, since even for a given actinic 
flux we do not have exact knowledge of what the photo­
lysis rate really is. The uncertainty in photolysis rate as 
considered as the reaction N02 --> hv--> NO+ 0 has to 
do with uncertainty regarding absorption cross section 
and quantum yield, assuming that actinic flux is known. 
In other words, even if cloud cover, ozone column, etc. 
were exactly known, so that actinic flux were exactly 
known, tbere would still be uncertainty in tbe photolysis 
rate because of uncertainty regarding absorption cross 
section and quantum yield. 

The uncertainties in emissions rate in Table 1 are 
mostly "factor of two'' except for major point sources, 
wbicb are a little better known ("factor of 1.5''). We 
initially considered the suggestions of some experts that 
some emissions classes (e.g., biogenic or mobile voe 
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Table 1 
Uncertainty ranges (include 95% of data) and associated sigmas (standard deviations of log-transformed data) for the 128 UAM-V input 
variables studied in the Monte Carlo runs. A range defined by plus and minus a "factor of ... " uncertainty encompasses 95 % of the 
data. for small uncertainty factors (i.e., less than 2), a factor of 1 + x uncertainty can be considered to be "plus and minus 100 x % 

Variable Variable number Uncertainty range 
(includes 95% of data) 

Sigma (log-normal 
unless noted) 

Initial ozone concentration 
Initial NOx concentration 
Initial VOC concentration 
Top ozone concentration 
Top NOx concentration 
Top VOC concentration 
Side ozone concentration 
Side NOx concentration 
Side VOC concentration 
Major point NOx emissions 
Major point VOC emissions 
Wind speed 
Wind direction 
Ambient temperature 
H 2 0 concentration (as RH) 
Vertical diffusivity (8AM-6PM; < lOOOMAGL) 
Vertical diffusivity (all other limes and heights) 
Rainfall amount 
Cloud cover (tenths) 
Cloud liquid water content 
Area biogenic NOx emiss. 
Area biogenic VOC emiss. 
Area mobile NOx emiss. 
Area mobile VOC emiss. 
Area low point VOC emiss. 
Other area NOx emissions 
Other area VOC emissions 
N02 , HCHOr, HCHOs, ALDs, and 03-01 
Photolysis rates 
CB-4 reactions 1-94 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

128 
17 
18 
19 
20 
21 
22 
23 
25 
26 
27 
28-33 

34-127 

emissions) were biased low by a factor of two or more, 
but decided not to include this median bias in the input 
specifications. The reason is that the EPA's OT AG exer­
cise made use of the original (possibly biased) emissions 
and it would shift the regulatory "baseline" if the median 
emissions were shifted. Consequently tbere was assumed 
to be no bias in the medians of any input variables, 
including emissions. 

The uncertainties in side boundary conditions are not 
expected to influence tbe UAM-V ozone predictions very 
mucb on the large OTAG geographic domain (see Fig. 1 ), 
where tbe upwind (soutb and west) sides are many hun­
dreds of km from the regions of high ozone concentra­
tions. However, the uncertainties in tbe top boundary 
conditions may bave an effect because they could mix 
down into the boundary layer during the day. The uncer­
tainties in initial conditions are not expected to have 

Factor of 3 
Factor of 5 
Factor of 5 
Factor of 1.5 (50%) 
Factor of 3 
Factor of 3 
Factor of 1.5 
Factor of 3 
Factor of 3 
Factor of 1.5 
Factor of 1.5 
Factor of 1.5 
± 40° 
±3K 
30% 
Factor of 1.3 (30%) 
Factor of 3 
Factor of 2 
30% 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 
Factor of 2 

Factor of 1.01 to 3.02 
Median 1.80, Mode 2.5 

0.549 
0.805 
0.805 
0.203 
0.549 
0.549 
0.203 
0.549 
0.549 
0.203 
0.203 
0.203 
20.0 degrees (normal) 
1.5 K (normal) 
15.0% (normal) 
0.131 
0.549 
0.347 
15% (normal) 
0.347 
0.347 
0.347 
0.347 
0.347 
0.347 
0.347 
0.347 
0.347 

0.10 to 0.55 
Median 0.30, Mode 0.46 

much effect because of the long (two day) "spin up" time 
for the model before the predictions are considered for 
analysis. 

We did not account for the variability in parameters 
that are not specifically part of the UAM-V input file but 
are found inside the UAM-V code, wbich is proprietary 
(i.e., no changes were made to the statements in the code). 

Variations in parameters such as horizontal and verti­
cal grid size, time step, and domain size are known to 
influence model predictions. For example, Tesche et al. 
(1998) suggest that the vertical grid resolution in the 
UAM-V model was too coarse in the OTAG applica­
tions, leading lo unrealistic injection heights for emis­
sions from large tall-stack point sources, and, thus, poor 
simulation of the contribution of these emissions to 
ozone in the domain. Tesche et al. (1998) also suggest that 
the model predictions are dependent on the horizontal 
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grid resolution. However, because it requires at least one 
week of labor to reinterpolate emissions, meteorology, 
and other spatially-variable inputs each time the grid size 
is changed, we did not perturb those variables. We are 
studying variations in only those variables that can easily 
be perturbed in the model input file. 

4. Monte Carlo method as applied to the July 1995 
OTAG scenario 

A long-term goal of the research is to develop a soft­
ware framework that would allow the uncertainties of 
regional photochemical grid models to be determined on 
other domains and for other episodes. The software used 
in the current UAM-V applications is based on a frame­
work that assumes that the user specifies a set of N model 
input parameters, their mean and variance, and their 
probability density function (pdf), as shown in Table 1. 
The Monte Carlo resampling software then generates 
a batch file containing lvI randomly selected sets of Nin­
put parameters that enable the user to run the model 
M times with perturbed input data. Certain key output 
parameters (e.g., predicted hourly ozone concentration in 
the lowest model level) from each of the M runs are then 
retrieved from the very large sets of model output files. 
The other model outputs (several thousand megabytes 
for each photochemical grid model run) are stored for 
possible future analysis. 

The OTAG domain is shown in Fig. 1 and a 12km 
horizontal grid resolution is used by the UAM-V model, 
as for the OTAG (1997) and EPA (1998) exercises. Even 
though the OTAG ozone episode continued from 7-18 
July, it was decided that computer lime could be saved if 
the simulations were stopped after 14 July, since the 
maximum concentrations of ozone were similar during 
the days that followed. The "ramp-up" period for the 
UAM-V model was 7-11 July and the model results were 
analyzed for the 12-14 July period. 

We believe that the 7-14 July 1995 base case makes 
a reasonable foundation for the study of model uncer­
tainty, primarily because of the reliance of the EPA 
on this episode for their decisions concerning emissions 
controls. This base case has been the subject of many 
investigations concerning its adequacy for determining 
emissions control strategies. Some potential problem 
areas have been identified in other research projects. For 
example, Lurmann and Kumar (1997) point out a "bias 
creep" in the UAM-V model predictions for this episode, 
meaning that the model tends to underpredict in the 
early days of the episode, and then tends to overpredict in 
the later days. Dolwick el al. (1998) suggest that there 
may be unreasonable accumulations of ozone and pre­
cursors aloft in the model. 

The median or base model inputs for the year-1995 
and year-2007 sets of 100 Monte Carlo runs were the 

same as those used in the OTAG runs (OTAG, 1997; 
EPA, 1998) for the year-1995 and year-2007 emissions, 
respectively. It should be mentioned that the emissions 
files were the only input variables that were different 
between the four sets of 100 Monte Carlo runs. An initial 
model run was made for both year-1995 and year-2007 to 
assure that the current model outputs are consistent with 
the earlier OTAG model outputs. An additional two sets 
of 100 Monte Carlo runs were made with 50% reductions 
in year-2007 anthropogenic NOx emissions and 50% 
reductions in year-2007 anthropogenic voe emissions, 
respectively. The base case median boundary and initial 
concentrations were not changed for these four sets of 
emissions scenarios, consistent with the assumptions in 
the OT AG runs. In reality, there would be expected to be 
a correlation between emissions and initial and boundary 
conditions, but there is no guidance in the literature on 
what these correlations would be. For a domain as large 
as the OT AG domain, the maximum ozone concentra­
tions in the middle of the domain are expected to be little 
influenced by the initial and boundary conditions. An­
other important fact is that the sets of 128 random 
perturbation numbers for the 100 Monte Carlo runs were 
identical over the four base emissions scenarios, thus 
allowing differences in predictions between the sets of 
runs to be better assessed. 

The primary output variables saved for special analy­
sis are maximum daily one- and 8 hr-averaged ozone 
concentration in the lowest grid layer during the 12-14 
July period for three alternate geographic definitions: ( 1) 
at any position on the entire OTAG domain, (2) at any 
position within 11 subdomains (Atlanta, Nashville, 
Chicago, Louisville, Charlotte, St. Louis, New York, 
New England, Philadelphia, Baltimore-Washington, 
Richmond, and Pittsburgh) within the larger OT AG do­
main, and (3) at 155 specific locations where there are 
routine monitors or where there is a special interest. In 
addition, the same output information is saved for NOx 
and VOC, except only for 1-hr averages. Fig. 1 showed 
the OT AG domain and the 11 subdomains. Most of the 
subdomains are so-called UAM regions; however, the 
Pittsburgh subdomain was expanded to include part of 
the Ohio River Valley and the Lake Erie shore. The 155 
specific locations are scattered throughout the domain 
shown in Fig. 1. Of the 155 specific locations, 135 are 
routine monitoring sites, and 20 are "artificial" sites 
which have been arbitrarily located in "holes" in the 
domain where there were no routine monitoring sites. 

The analysis is concerned with three primary topics: ( l) 
gross uncertainties in outputs, (2) correlations and regres­
sions among inputs and outputs, and (3) differences in 
outputs depending on median emissions assumptions. 
We have the most confidence in the results for the first 
topic, gross uncertainties in outputs, which are discussed 
in Sections 5.1 and 5.2. For example, with 100 Monte 
Carlo runs, the variance in the output variables can be 
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well defined. It is possible to use the outputs of the 100 
Monte Carlo runs to determine the range or variance in 
the predicted maximum daily hourly averaged ozone 
concentration. 

There is more uncertainty associated with the analysis 
of the results for the second topic, the correlation coeffi­
cients and regression relations among inputs and out­
puts, which are discussed in Section 6. With random 
selection of any 100 pairs of independent variables, there 
is a 5% probability that the absolute magnitude of the 
calculated correlation coefficient will exceed 0.19 (this 
number is twice the standard deviation, (N)- 112

). For the 
earlier research, where there were only 50 Monte Carlo 
runs, Hanna et al. (1997, 1998) emphasized only those 
variables with correlation coefficients with absolute mag-
nitudes of 0.28 (or 2 times so- or greater. 

To address topic three, the outputs from the four 
different base emission runs were analyzed to study the 
magnitude and direction of the changes in predicted 
ozone concentration. Because each of the four sets of 
Monte Carlo runs used the same sets of random num­
bers, the differences were calculated between the 100 
pairs of maximum predicted hourly averaged ozone con­
centration for each pair of base emissions runs and the 
resulting CDFs were determined. This was done for the 
entire domain ("all-domain") for the four sets of 100 runs, 
and was also done for the 11 subdomains and for the 155 
individual sites. Any differences in ozone concentration 
predictions would be primarily due to the difference 
in base emissions. The estimated 95% range on the 
difference in predicted ozone concentration for two sets 
of emission runs was analyzed to see if the 95% 
range overlapped zero. If the 95% range does not overlap 
zero, then it can be inferred that there is a real differ­
ence between the ozone predictions by the two sets of 
em1ss10ns runs. 

5. Uncertainties in ozone predictions 

5.1. Cumulative distribution fimctions of uncertainty in 
predicted ozone maxima 

The cumulative distribution functions (CDFs) of the 
100 Monte Carlo predicted maximum domain-wide 
hourly averaged ozone concentrations were close to log­
normal for all four base emissions cases, with a standard 
deviation of In C, cr10 c, of 0.22 or 0.23. This standard 
deviation is equivalent to "factor of 1.6" variability in 
C within the 2.5th and 97.Sth points on the CDF. 
To illustrate the consistent spread of the distributions, 
Table 2 lists the 2.5lh, 50th, and 97.Sth percentiles of the 
distributions of predicted maximum hourly averaged 
ozone concentration, C (ppm), over the 12-14 July 1995 
period, for the 11 sub-domains (see Fig. 1) and for the 
entire OTAG domain (all-domain) from the 100 Monte 

Table 2 
2.5th. 50th, and 97.5th points on the cumulative distribution 
function (CDF) of the 100 Monte Carlo predictions of maximum 
hourly averaged maximum ozone concentration (ppm) for the 
11 sub-domains and for the entire domain for the 12-14 July 
1995 ozone period and for year-2007 median emissions, for the 
OT AG domain (12 km grid) 

Monte Carlo 

Sub-domain 2.5th 50th (median) 97.5th 

Atlanta 0.09ppm 0.17 ppm 0.32ppm 
Bait-Wash 0.08 0.14 0.22 
Nashville 0.07 0.12 0.21 
Chicago 0.07 0.12 0.19 
Louisville 0.06 0.12 0.19 
Pittsburgh 0.07 0.12 0.18 
Philly 0.07 0.11 0.19 
New York 0.06 0.11 0.19 
New England 0.06 0.11 0.19 
Charlotte 0.07 0.11 0.18 
St. Louis 0.06 0.09 0.15 
(All Domain) 0.13ppm 0.19ppm 0.32ppm 

Carlo runs with the median year-2007 projected emis­
sions. The table clearly shows the consistent result there 
is close to a factor of 1.6 ratio for C(50th)/C(2.5th) and for 
C(97.5th)/C( 50th). 

Very similar CDF shapes occurred for one and eight­
hour averages, for the complete OT AG domain, for the 
11 sub-domains shown in Fig. 1, for the 155 monitoring 
sites, and for the four groups of emissions scenarios. 

These results concerning the CDF shapes are in agree­
ment with the results reported by Hanna et al. (1998) for 
the New York City domain for the July 1988 episode. It 
can be concluded that there is consistency of the log­
normal distributions, with cr10 c = 0.23, across a wide 
variety of sites and emissions control scenarios. 

5.2. Locations of l\1onte-Carlo-predicted ozone maxima 

The locations of the predicted maximum domain-wide 
1-h and 8-h averaged ozone concentration occurred 
primarily in the Southeast, in the Atlanta UAM domain, 
for most of the UAM-V Monte Carlo runs on the OTAG 
domain for the 12-14 July 1995 period. The location of 
the observed ozone maximum also occurred in the At­
lanta UAM domain. For a few of the Monte Carlo runs, 
the location of the predicted ozone maximum switched to 
the Chicago domain or the New York domain. Weather 
maps show that the Northeast was influenced by clouds 
prior lo 13 July 1995, which tended to inhibit the forma­
tion of ozone in that area. The peak ozone concentration 
in the northeast did increase during 13-14 July, when hot 
and sunny weather occurred, accompanied by southwest 
winds as a cold front approached. In the meantime, the 
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Southeast was hot and dry with relatively high observed 
ozone concentrations tbrougbout the 1995 episode. 

Because of the location of tbe ozone maximum in the 
Atlanta domain, it is expected that some of the correla­
tions with input variables would be different than those 
found in the earlier study on the New York City domain. 
For example, Hanna et al. (1998) found tbat the variabil­
ity in predicted ozone concentrations in tbe New York 
City domain were influenced by the variability in emis­
sions in the large upwind New York City and New Jersey 
megalopolis and by variabilities in the upwind boundary 
conditions in central New Jersey. However, for the cur­
rent study, there is not a huge megalopolis in the upwind 
sector and the boundaries are relatively distant. 

5.3. Effects of assumptions of emissions controls 
on uncertainties of outputs 

The medians of the Monte Carlo outputs of predicted 
maximum ozone concentration can be analyzed to arrive 
at conclusions concerning the effects of emissions con­
trols. Define C50 as the median or 50th percentile of the 
distribution of 100 Monte Carlo outputs. The following 
results are generally valid for the all-domain hourly aver­
aged ozone maximum and also for the maxima in the 11 
individual sub-domain: C50 (2007 emissions)/C50 (1995 
emissions) = 0.88; C50 (2007 with 50% NOx reduc­
tions)/C50(2007) = 0.77; and C50 (2007 with 50% VOC 
reductionsj/C50 (2007J = 0.97. 

Despite the fact that tbe median ozone concentrations 
sbow 5 or 10 or 20% changes downwards as a result of 
emissions reductions, it is not obvious whether these 
differences are less than or greater than the expected 
variability due to random processes. Because of possible 
correlations among similar runs, it is not correct to use 
the full Monte Carlo uncertainties ( a 1n c = 0.23) to calcu­
late the expected variability of differences in predicted 
ozone concentration for sets of runs with different base 
emissions assumptions. Fortunately tbe four sets of 
Monte Carlo runs were carried out in sucb a way that the 
expected variability of differences can be estimated from 
the available Monte Carlo output files. This is because 
each of the four sets of 100 Monte Carlo runs used the 
same 100 (number of Monte Carlo runs) by 128 (number 

Table 3 

of input variables) matrix of random numbers. For 
example, Monte Carlo "run 14" would use the same 
random number to perturb the wind speed for the 1995 
base emissions runs, for the 2007 base emissions runs, 
and for the 50% NOX and 50'% voe reduction runs. 
Therefore, for Monte Carlo "run 14", the difference in the 
predicted maximum ozone concentration between the 
2007 base emissions runs and the 2007 base emissions 
with 50% voe reductions runs would be solely due to 
the 50% emissions change. 

The CDFs of the differences in all-domain predicted 
maximum hourly averaged ozone concentration between 
the Monte Carlo runs for paired sets of base emissions 
assumptions were calculated for the three pairs of differ­
ences (1995 base-2007 base; 2007 base-2007 base with 
further 50% NOx reductions; and 2007 base-2007 base 
with further 50% VOC reductions). The 2.5tb, 50th (me­
dian), and 97.5th points on the CDF were identified and 
the "95% range" assumed to be bounded by the 2.5lh 
and 97.5th points on the CDF. Table 3 contains the 
results. 

For comparison purposes, the second column of 
Table 3 lists the median predicted maximum all-domain 
hourly averaged ozone concentration for the 1995 or the 
2007 base emissions. Note that, in tbe first two rows (for 
the difference between 1995 and 2007 base emissions and 
for the difference between 2007 base emissions and 2007 
with 50'% NOx emission cuts), the 95% range does not 
overlap zero, implying that the difference may be real and 
not due to random variability. However, in the last row 
(for the difference between 2007 base emissions and 2007 
with 50'% voe emissions cuts), the 95% range barely 
includes zero, implying that the slight difference may be 
due only to random variability. Note that the 95% range 
on the difference in the first row encompasses about 
0.04 ppm, while the 95% range for tbe total Monte Carlo 
uncertainty for the "all-domain" case in Table 2 en­
compasses about 0.19 ppm. Thus the uncertainly in the 
differences in ozone predictions due to emissions changes 
is about one-fifth of the total uncertainty in ozone predic­
tions due to all model inputs. This result corroborates the 
assumption underlying the EPA's use of the ·'relative 
response factor" in demonstrating attainment, which is 
based on the assumption that the uncertainty in the 

Ninty five percent range on differences in maximum hourly averaged ozone predictions between sets of 100 Monte Carlo runs using 
different assumptions for base emissions. For the entire OT AG domain over the 12-14 July 1995 period 

Base emission assumption Median cone. of base Median cone. difference 95% range on cone. difference 
(ppm) (ppm) (ppm) 

1995 base-2007 base C (1995 base) = 0.21 ppm 0.024 0.(Jl 1 to 0.052 
2007 base-2007 NOx cuts C (2007 base)= 0.19 ppm 0.043 OJJ23 to 0.074 
2007 base-2007 voe cuts C (2007 base)= 0.19 ppm 0.006 0.000 to 0.022 
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difference of ozone maximum predictions between the 
base and emissions control runs is less than the uncer­
tainty in the ozone maximum predictions themselves. 

The discussion above and the data in Table 3 deal with 
the differences in the maximum hourly averaged ozone 
concentration over the entire OT AG domain (all­
domain). The same analysis was carried out for the 11 
subdomains shown in Fig. 1 and for the 155 receptor 
sites. The 95% ranges on the CDFs of the differences in 
predicted concentrations for the four emissions scenarios 
vary from site to site, sometimes overlapping zero and 
sometimes not. For example, consider the difference in 
1995 base emissions and 2007 base emissions (row 1 of 
Table 3 gives the results for the "all-domain" maximum 
ozone concentration). Approximately one-third of the 
155 sites have the 95% range overlap zero, implying that 
the difference is probably due to random variability at 
those sites. At 11 of the sites, all in the Southeast, the 
median difference is greater than zero (i.e., the concentra­
tions are higher in 2007, after emissions controls are 
implemented, than in 1995). 

The 95% ranges on the differences were also studied at 
the 155 sites for the 50% NOX and the 50% voe 
emissions reductions. The 95% range does not overlap 
zero for about 80% of the 155 sites for the 50% NOx 
emission reductions. However, the differences appear to 
be caused solely by random variability at many sites in 
the Northeast, implying that the NOx emissions reduc­
tions may be more effective in the Southeast than in the 
Northeast. Five sites (in the Chicago, Baltimore-Wash­
ington, Philadelphia, and New York domains) have 
a median difference greater than zero, meaning that the 
median predicted maximum ozone concentration in 
these areas actually increased with a 50% NOx emissions 
reduction. 

The differences for 50% VOC emissions reductions 
suggest that any ozone concentration changes are solely 
due lo random variability. About 75% of the sites have 
the 95% range overlap zero, and 10% of the sites (most in 
the Southeast) have the median difference greater than 
zero. In the latter cases, the median predicted maximum 
ozone concentration increased with a 50% voe reduc­
tion. The VOC emissions reductions appear to be slightly 
more effective in the Northeast than in the Southeast 
although the changes are generally low everywhere on 
the OT AG domain. 

5.4. Differences in uncertainty estimates for I-hr and 8-hr 
averages 

The conclusions (based solely on UAM-V model pre­
dictions) concerning Monte Carlo estimates of uncertain­
ties in the predictions of maximum ozone concentrations 
are little changed for 1- versus 8-hr averages. The main 
difference is that the 8-hr average predicted maximum 
daily ozone concentrations are about 10% lower than 

the 1-hr averages. This 10% relation for photochemical 
grid model predictions was also suggested by Chock et al. 
(1999). The EPA has calculated this relation for observa­
tions at their ozone-monitoring sites and found that, 
on average, the 8-h averages are observed to be about 
15% less than the 1-h averages for maximum daily 
ozone concentrations (see http://envpro.ncsc.org/OMS/ 
pub/Sitelnfo/Correlation-Report. txt). This agreement 
between the 10% figure for model predictions and the 
15% figure for observations is fairly good, considering 
that the observations are taken al single points and are 
therefore expected to have more variability than the 
model predictions, which represent ensemble averages 
over grid volumes. 

6. Input variables whose uncertainties have the largest 
effect on uncertainties in predicted ozone 

6.1. Correlation analysis 

It was stated earlier that the observed and predicted 
maximum hourly averaged ozone concentrations usually 
occurred in the Atlanta UAM domain. More precisely, 
the maximum occurred in northern Alabama, to the west 
of Atlanta. This is not a region subject to long-range 
transport to the same extent as the New York UAM 
domain. In northern Alabama, there are relatively few 
large source regions in the upwind direction (i.e., to the 
southwest), while in New York, there are many large 
source regions in the upwind direction (e.g., New Jersey, 
Philadelphia, Baltimore, and Washington). It is therefore 
expected that some of the correlation coefficients and 
regression results between variations in predicted max­
imum ozone concentrations and variations in input para­
meters may be different for the current phase of the 
research than for the earlier study (Hanna et al., 1998). 

The results of the latest set of Monte Carlo runs 
suggest that the N02 photolysis rate is the variable 
whose uncertainties are most strongly correlated to the 
uncertainties in predictions of maximum hourly averaged 
ozone concentrations for the 12-14 July period. At over 
90% of the 155 receptor sites, variations in N02 photoly­
sis rate show a correlation of about + 0.6 with variations 
in predicted maximum hourly averaged ozone concentra­
tion. It is interesting that, in the entire set of over 90 
CB-IV photochemical reactions, this is the only process 
that directly produces ozone, via the production of 
atomic oxygen from N02 through the reaction 
(N02 -->!iv--> NO + 0), and the subsequent production 
of ozone through the reaction (0 + 0 2 + (M)--> 0 3 ). 

The analysis of the Monte Carlo runs also shows signifi­
cant correlations (i.e., correlations with magnitudes ex­
ceeding 0.19) between variations in predicted maximum 
hourly averaged ozone concentrations and variations in 
wind speed and direction, relative humidity, cloud cover, 
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and biogenic VOC emissions. These results could allow 
future research to be focussed on better specifying the 
input variables that have the strongest influence on the 
ozone predictions. 

Hanna et al. (1998) reported that, for the New York 
City UAM domain, variations in the rate constants for 
some chemical reactions were found to produce signifi­
cant correlations with variations in maximum hourly 
averaged ozone concentrations predicted by UAM-lV. lt 
was not obvious why these particular reactions were 
more important than others. In the current study involv­
ing UAM-V on the OTAG domain, some of the same 
reactions were found to be important. In particular, sig­
nificant correlations are found with the following CB-IV 
reactions: 

CB-IVReaction46:C2 0 3 + NO--. N02 + X02 

+FORM+ H02. 

CB-IVReaction50:C2 0 3 + H02 ---> 0.79FORM 

+ 0.79X02 + 0.79H02 + 0.790H. 

Further inspection suggests that these two reactions are 
especially important for ozone production not only be­
cause the first reaction produces N02 , but also because 
both reactions lead to a net increase in peroxyl radicals 
that can subsequently produce N02 by reaction with 
NO, as well as formaldehyde, a photochemical precursor 
of additional radicals that can lead to N02 production. 
Thus these reactions are radical amplifiers. 

Hanna et al. (1998) found strong correlations between 
variations in anthropogenic area source emissions of 
voe and variations in predicted maximum ozone con­
centration in the New York City UAM domain. But the 
current Monte Carlo study does not yield such high 
correlations. We postulate two reasons for this. The first 
reason is that the New York City domain studied earlier 
was largely VOC-limited, such that substantial ozone 
responses were simulated for voe emissions changes. 
On the other hand, the rural-dominated OTAG domain 
used in the current Monte Carlo study was largely NOx­
limited, resulting in negligible simulated ozone responses 
to voe emissions reductions over most of the domain. 
The second postulated reason is that, for input to the 
UAM-V model used in the current Monte Carlo study, 
the anthropogenic area sources of VOC are separated 
into three components: mobile, low point, and other area. 
The Monte Carlo simple random sampling method picks 
values of these components separately and independ­
ently. Because there is no correlation prescribed be­
tween these components, the positive and negative 
perturbations of the chosen random numbers (one for 
mobile sources, one for low-point sources, and one for 
other area sources) tend to cancel out, leading to a re­
duced effect of total voe anthropogenic area sources on 
variations in predicted ozone concentration. In contrast, 

the anthropogenic VOC emissions inputs to UAM-IV in 
the earlier study consisted of a single relatively large an­
thropogenic area source term, whose variations therefore 
had a stronger effect on variations in predicted ozone. This 
finding suggests that future studies with inputs that are 
known to be correlated might consider including estimates 
of these correlations in the random sampling procedure. 

The earlier results, on the relatively small New York 
City domain, suggested that uncertainties in boundary 
concentrations were correlated to uncertainties in pre­
dicted maximum ozone. This was not found in the current 
study, probably because of the large differences in domain 
sizes. In the earlier study, there were large amounts of 
ozone, voes and NOX on the upwind domain boundary 
in central New Jersey. In contrast, for the relatively large 
OT AG domain used in the current study, the domain 
boundaries were in rural areas far upwind of the region 
where high ozone and precursor concentrations were 
occurring. 

6.2. Regression analysis 

Standard multiple linear regression analysis was ap­
plied to the inputs and outputs of the 100 Monte Carlo 
runs for each emission group. In a sense, this procedure 
attempts to replace the original UAM-V three-dimen­
sional grid model with a response surface based on mul­
tiple linear regression. This analysis was done for the 
input variables whose variations showed a correlation 
exceeding 0.19 with the variations of the peak domain­
wide hourly averaged ozone concentration. The criterion; 
0.19, represents the magnitude of the correlation coeffi­
cient where, for 100 pairs of independent variables, there 
is 95% confidence that the calculated correlation is sig­
nificantly different than zero. This analysis was done 
for the OT AG-domain-wide maximum ozone concentra­
tion, for the maximum in the 11 smaller UAM domains, 
and for 1 and 8-h averages. The ozone maximum could 
occur anytime in the 12-14 July 1995 period. The results 
were fairly consistent, as shown by the regression for­
mulas listed below for the OT AG-domain 1-h maximum 
ozone concentration for the four base emissions scen­
arios. The numbers in parentheses (e.g., R 2 = 0.74) indi­
cate the fraction of the variance explained by the regres­
sion formula. The input variables are expressed as frac­
tions or relative changes (i.e., change in the variable 
divided by the value of the variable). Shorthand notation 
is used for the key variables (refer to Table 1): u =wind 
speed (variable 12); CC= cloud cover (variable 18); 
VOCBIO =area biogenic VOC emissions (variable 21); 
N02phot = N02 photolysis rate; Rl =CB-IV reaction 
1 (N02 --->hv---> NO+ O); R15 =CB-IV reaction 15 
(N03 +NO--. 2N02 ); R41 =CB-IV reaction 41 
(FORM + N03 --. HN03 + H02 + CO); and R46 = 
CB-IV reaction 46 (C2 0 3 +NO--> FORM+ N02 + 
H02 + X02). 



S.R. Hanna et al./ Atmospheric Environment 35 (2001) 891-903 901 

For year 1995 emissions (R 2 = 0.74): 

0 3 (ppm) = 0.088 ppm - 0.093(Au/u) - 0.029(ACC/CC) 

+ 0.051(AVOCBIO;VOCBIO) 

+ 0.098(AN02 phot/N02 phot) 

+ 0.023(AR46/R46) 

For year 2007 emissions (R 2 = 0.71): 

0 3 (ppm) = 0.095 ppm - 0.069(Au/u) - 0.023(ACC/CC) 

+ 0.044(AVOCBIO;VOCBIO) 

+ 0.088(AN02 phot/N02 phot) 

+ 0.074(AR1/Rl) - 0.025(AR41/R41) 

For year 2007 emissions with 50% cuts m NOx 
(R 2 = 0.72): 

0 3 (ppm) = 0.023ppm - 0.064(Au/u) 

+ 0.023(AVOCBIO;VOCBIO) 

+ 0.067(AN02 phot/N02 phot) 

+ 0.043(AR1/Rl) + 0.020(AR15/R15) 

+ 0.020(AR41/R41) 

For year 2007 emissions with 50% cuts m VOC 
(R 2 = 0.72): 

0 3 (ppm) = 0.061 ppm - 0.066(Au/u) 

- 0.022(ACC/CC) + 0.052(AVOCBIO/ 

VOCBIO) + 0.081(AN02 phot/N02 phot) 

+ 0.069(AR1/Rl) 

Recall that the prediction of median domain-wide 
daily maximum hourly-averaged ozone concentration is 
about 0.20 ppm. The coefficient of the relative N02 

photolysis rate change term, AN02 phot/N02 phot, is in 
the range from 0.067 to 0.098 in the four equations above, 
implying that a 50'% uncertainty in N02 photolysis rate 
causes about a 0.04ppm, or a 20% uncertainly in pre­
dicted maximum ozone concentration. The coefficient of 
the relative wind speed change term, Au/u, has a similar 
range from 0.064 to 0.093 in the four equations, also 
implying that a 50% uncertainty in wind speed causes 
about a 0.04 ppm, or a 20% uncertainty, in predicted 
ozone concentration. The reason why the gross results of 
the correlation analysis, discussed in Section 6.1, showed 
that the uncertainties in N02 photolysis rates have a lar­
ger effect than uncertainties in wind speed on uncertain­
ties in predicted maximum ozone concentrations is that 
the assumed total uncertainty is about 1.7 times as large 
for the photolysis rate (O"in phot rnte = 0.347) as for the wind 
speed (0"1n u = 0.203). 

It is seen that cloud cover, CC, has a consistent regres­
sion constant of about 0.02-0.03 in the equations. Thus 
an uncertainty of 50% in cloud cover causes an uncer­
tainty of about 0.01 ppm, or about 5'%, in predicted 
maximum ozone. The area biogenic VOC emissions, 
VOCBIO, have a regression coefficient ranging from 
0.023 to 0.052, with the smaller number for the runs with 
reduced NOx emissions. For most of the cases, a 50% 
uncertainty in voe biogenic emissions causes about 
a 10% uncertainty in predicted maximum ozone. 

Four chemical reactions appear in the four regression 
equations, with reaction 1 (N02 --->NO + 0), or variable 
34, appearing three out of four times. This reaction 
"teams" with the N02 photolysis rate and is interesting 
because this (along with reaction 2: 0 + 0 2 + (M)---> 
0 3 ) is the only mechanism for direct formation of ozone. 
The regression constant for reaction 1 averages about 
0.06, implying that a 50% uncertainty in the rate con­
stant for reaction 1 leads lo about a 15% uncertainty in 
predicted ozone concentrations. It follows that a priority 
should be given to more accurate determination of the 
N02 photolysis rate and the reaction rate for reaction 1. 

7. Limitations to study and recommendations for further 
research 

The Monte Carlo uncertainty methodology is 
a powerful technique that is seeing increasing applica­
tions to large three-dimensional environmental models. 
The earlier study (Hanna et al., 1998) and the current 
study are meant to be preliminary demonstration exer­
cises of the Monte Carlo methodology as applied to 
three-dimensional photochemical grid models. The re­
sults of these applications appear realistic and much 
experience has been gained in the methodology, which 
has been revised considerably over the course of the 
research. It would be appropriate for decision-makers to 
use this information on uncertainties as part of the pro­
cess by which emissions reductions are prescribed. 
Nevertheless, there are a few limitations that should be 
addressed: 

Dependence on satisfacto1y model - The methodology 
assumes that the model is satisfactory to begin with and 
is able to account properly for the major physical and 
chemical effects. The uncertainty analysis looks only at 
the influence of uncertainties in model input parameters 
and variables on the uncertainties of model output vari­
ables. The methodology does not account for deficiencies 
in model formulations, which may lead to compensating 
errors and other effects that mask the true variabilities 
and dependencies. For these reasons, two different 
photochemical grid models may give different results 
when the Monte Carlo methodology is applied to them. 

Dependence on good knowledge of input variable uncer­
tainty - Our expert elicitation exercise suggests that most 
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photochemical modelers have not devoted extensive ef­
fort to estimating input variable uncertainties. Conse­
quently the uncertainties assumed in Table 1 represent 
preliminary estimates which should be refined as this 
research field matures. The best information exists for the 
uncertainties of the photochemical reaction rate con­
stants, which have been studied for other purposes, such 
as modeling the photochemistry of the stratosphere. 
Also, there has not yet been an acceptable way devised to 
estimate the variability in meteorological inputs, because 
of difficulties associated with the need to maintain mass 
conservation in the wind fields. The best way to treat 
meteorological uncertainty would be to apply the Monte 
Carlo method to a diagnostic or prognostic meteorologi­
cal model, beginning with uncertainties in the basic in­
puts such as the surface wind and radiosonde inputs, but 
this would be an extensive effort all by itself. Other 
difficulties exist in the estimation of uncertainties in 
boundary and initial conditions because there are not 
sufficient observations of vertical and spatial fields of the 
chemical constituents. Finally, the literature contains 
a long trail of discussions about possible biases in the 
baseline emissions inputs, with recent improvements to 
some components such as biogenic and mobile source 
VOCs. Nevertheless. few estimates of uncertainties in 
emissions are available. 

Categorization of emissions classes - It was mentioned 
in Section 6 that the influence of variations in anthropo­
genic VOC area source emissions on uncertainties in 
predicted ozone concentration was decreased in the cur­
rent study when compared with the previous study 
(Hanna et al., 1998). This is because the UAM-V model 
used in the current study has three categories of anthro­
pogenic area source emissions, whereas the UAM-IV 
model used in the previous study lumps the three catego­
ries into a single class. By randomly and independently 
varying these three categories, the total variation in com­
bined emissions lends to be less because of cancellations 
of positive and negative perturbations of the compo­
nents. Jn reality, the components are correlated. If emis­
sions classes are subdivided, it may be useful to estimate 
the magnitudes of these correlations and account for 
them in the resampling method. This is also true of 
correlations between emissions and other input variables 
such as boundary voe concentrations. 

Long-range transport issues - Because of the use of the 
words "ozone transport" in the name OT AG, there is an 
interest in determining the uncertainty of ozone concen­
trations due to variations in emissions inputs at locations 
several hundred kilometers upwind of where the ozone 
concentration is being observed. In the current study, it is 
difficult to address long-range transport issues because 
all emissions in each category are varied uniformly across 
the OTAG domain. To study transport issues, it would 
be of interest to look at variations of emissions in cer­
tain source groups, such as Midwest power plants, and 

determine their influence on uncertainties in predicted 
ozone concentrations in key downwind areas, such as 
northern New York or New England. 
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