3.14 Transportation and Circulation

This section of the Environmental Impact Report (EIR) describes and evaluates potential impacts related to transportation and circulation that could result from implementation of the Proposed Project. The section includes relevant baseline information, including a description of the project's anticipated travel characteristics and relevant local, regional, state, and federal
regulations. Project impacts to the roadway, bicycle, pedestrian, and transit systems in the study area are analyzed for baseline and cumulative conditions. Feasible mitigation measures (where \qquad applicable) are then identified to avoid or lessen the impacts.

Comments received in response to the NOP for the EIR regarding transportation and circulation can be found in Appendix B. Any applicable issues and concerns regarding potential impacts related to transportation and circulation as a result of implementation of the Project are analyzed within this section.

This chapter relies on a variety of data sources and/or publicly available information to support the technical analysis. This information includes, but is not limited, to:

- Data from the Cities of Inglewood, Hawthorne, Los Angeles, and County of Los Angeles.
- Data from Caltrans and the Los Angeles County Metropolitan Transportation Authority (Metro).
- Online survey of NBA Los Angeles Clippers fans
-. and

Identification of Analysis Scenarios and Study Periods

A variety of different types of events would be expected to occur at the proposed project. These events may occur simultaneously with events at the new NFL Stadium and The Forum, both of which are located within one mile of the project. This section discusses the extent to which these events may occur concurrently, which in turn, drives the selection of peak hours of study and development of analysis scenarios to cover such overlapping events. Refer to Technical Memorandum \#1-Scheduling and Overlap of Events in IBEC Vicinity in Appendix X for more information.

Table 3.14-1 provides an overview of the types of events, their general frequency and timing, and expected attendance. As shown, programming for the proposed project would allow for up to 108 events per year (not including potential NBA playoff games) with attendance levels of at least 7,500 persons. Up to an additional 100 smaller events (2,000 persons or less) may also occur. The most frequent large event (18,000 persons) would be NBA Clippers regular season basketball games, which runs from late October through April. During that time, the Clippers will play 41 regular season home games (along with four lesser attended pre-season games and potentially playoff games in Asel.. May and June). Of the 23 total concerts expected during a typical year, eight (8) would be anticipated to attract up to 18,500 guests.

Table 3.14-1
Overview of Event Types, Frequency, and Timing at Project, NFL Stadium, and the Forum

Location	Common Event Types	Event Characteristics				
		Time of Year	Day of Week	Frequency	Approx. Start/End Time	Maximum Attendance
Project	Clippers NBA Basketball Games (Regular)	Oct - April	Any	41 Regular Season	Typically Evening ${ }^{\text {a }}$	18,000
	Clippers NBA Basketball Games (Pre \& Post)	 May/June	Any	4 Pre-Season \& Up to 16 Post-Season	Typically Evening ${ }^{\text {1 }}$	$18,000^{5}$
	Concerts	Throughout	Fri/Sat more likely	Up to 8 large events	Evening	18,500
	Family Shows ${ }^{\text {2 }}$......	Throughout	Any	Approx. 20	Varies	8,500
	Corporate/Community Events ${ }^{3}$	Throughout	Any	Up to 100	$8 \mathrm{AM}-5 \mathrm{PM}$	2,000
	Other Event ${ }^{4}$	Throughout	Any	Approx. 35	Varies	7,500
NFL Stadium	NFL Football Games (Regular)	Sept-Dec	Mon, Thurs, Sat, and Sun	16 Regular Season	Mon \& Thurs: $5: 20 \mathrm{PM}$ Sat: $5: 20 \mathrm{PM}$ Sum: $105,1: 25$, or $5: 20$ PM	70,000
	NFL Football Games (Pre \& Post)	Aug \& Jan	Sat \& Sun	2 Pre-Season \& Up to 2 Post-Season	Varies	$70,000{ }^{5}$
	Mid-Sized Event	Throughout	Any	Up to 8	Typically Evening	25,000
	Totoremes Ymus Wes:					c
Forum	Concerts	Throughout	Any	75^{6}	Evening	18,000

${ }^{1}$ Weekend games (especially Sunday) may start at $12: 30 \mathrm{PM}, 3 \mathrm{PM}$, or 6 PM .
${ }^{2}$ Examples of event types include Disney on Ice, Harlem Globetrotters, etc
${ }^{3}$ Examples of event types include small conventions, conferences, cultural/civic events.
${ }^{4}$ Could include college basketball, boxing, professional wrestling, graduations, speaking events, etc.
${ }^{5}$ Pre-season games typically do not reach maximum attendance.
${ }^{6}$ Based on events at the Forum in 2016-2018 (source: https://www.songkick com/venues/16272-forum/gigography?page=1).
${ }^{7}$ SOURCE: Fehr \& Peers, 2019.

The NFL Stadium would host the home games for the NFL Rams and Chargers. They would each play eight (8) home games and two preseason games. Playoff games could also occur. In
addition to football games, this facility would also host up to eight (8) mid-sized events (25,000

The degree of overlap of NFL Rams/Chargers and NBA Clippers games was studied for the 2016-2018 seasons. An NBA Clippers game overlapped with an NFL Rams/Chargers game once per season in 2016 and 2017, twice during the 2018 season. Based on this review, the following conclusions are drawn:

1. Overlapping NFL Rams/Chargers and NBA Clippers events occurred no more than once or twice per year, which is to be expected since NFL franchises play only eight regular season home games per year. Each of these overlapping events occurred on a weekend day, which also makes sense because the majority of NFL games are played on Sundays.
2. When reviewing the timing of overlapping events on weekends, it is apparent that there is a single peak hour of maximum potential effect because the overlapping events do not begin and end simultaneously. This is discussed further below.

Therefore, it is concluded that analysis of an NFL football game and Clippers game orlage cosert on the same weekend day is warranted. The suggested approach for evaluating such a condition is the following sequence of events:

- An NFL game that begins at 1:25 PM followed by an NBA Clippers game that begins at

 both events would occur from approximately 5 to 6 PM . Nhe fhet areveresedering of

An analysis of such an overlapping NFL and NBA event on a weekday is not justified because three years of regular season events for these franchises did not reveal a single weekday in which overlapping events occurred. Further, if these events were to occur in such a rare instance, they would have non-overlapping weekday peaks. The peak hour of arriving traffic to a weekday NBA game would be 6-7 PM (based on assumed 7 PM start), which would occur after the NFL game (5:20 PM start time) has already begun. The peak hour of departing traffic for the NBA game ($9: 30-10: 30$ PM) would begin one hour after the NFL game has concluded and much of the parking lot has emptied.

The following describes the extent to which project events may overlap with NFL Stadium ando: Forum Events.

- Between 2016 and 2018, the Forum hosted an average of approximately 75 concerts per year. During peak concert season, there may be as many as 9 to 10 concerts a month.

Therefore, a scenario in which both venues are hosting large events is included in Table 3.14-2, which presents the analysis scenarios studied in this section.

- It is reasonable to expect that proposed project events could overlap on the same weekday with a mid-sized (non-football) event at the NFL Stadium, with an expected attendance of 25,000 . Therefore, such a scenario is included in Table 3.14-2. It is also possible that these two concurrent events could also overlap with an event at the Forum. Therefore, this scenario is also included in Table 3.14-2.
- Based on review of the scheduling for all three venues during which there would be an NFL Rams/Chargers football game, $\%$ \% $\%$. $\%$. $\%$ such an overlapping event would be extremely rare. However, to ensure that all potential proposed project impacts are identified, the following analysis scenario is included in Table 3.14-2 and analyzed in this section:
- An NFL game begins on a Sunday at 1:25 PM. The Clippers play that same evening at 6 PM . A concert is held at the Forum beginning at 7 PM . Based on this, the peak hour of analysis is $5-6 \mathrm{PM}$ to capture outbound NFL trips and inbound NBA trips (and some inbound concert trips as well).

This scenario is highly conservative because it semo woule oom very infrequently. Furthermore, it assumes an early start time at the Forum that results in overlaying of additional trips on top of the $5-6$ PM study hour (concerts at the Forum generally start at 8 or 9 PM).

TABLE 3.14-2
PROPOSED PROJECT TRANSPORTATION IMPACT ANALYSIS SCENARIOS

3.14.1 Environmental Setting

This section describes the environmental setting, including the existing condition of the roadway, bicycle, pedestrian, and transit networks.

Roadway Network

The roadway network includes local streets and intersections, plus State and federal highways and freeways.

Study Area

Given the magnitude of vehicle trips that could be generated under various concurrent event scenarios, a substantial study area was chosen. The study area, which is shown in Figure 3.14-1, includes 114 total study intersections within an approximate 20 square-mile area. The study area extends westerly to I-405, southerly to I-105, and easterly to I-110. Its northem limits are generally at Centinela Avenue and Florence Avenue, but with several outlying intersections even further north. The study area was scaled down to 43 study intersections for the less traffic intensive ancillary project land uses and weekday daytime events scenarios.

Freeway System

The following freeways would provide access to the project site:

- San Diego Freeway (I-405) - The San Diego Freeway runs north/south approximately one and one-half miles west of the project site. Access to the project site from I-405 is provided by interchanges at La Cienega Boulevard, Century Boulevard, Manchester Boulevard, and Imperial Highway.
- Glenn Anderson (I-105) - The Glenn Anderson Freeway (also known as the Century Freeway) runs east/west approximately one mile south of the project site. Access to the project site from I-105 is provided by interchanges at Prairie Avenue and Crenshaw Boulevard.
- Harbor Freeway (I-110) - The Harbor Freeway runs north/south approximately four miles east of the project site. Access to the project site from the Harbor Freeway is provided by interchanges at Century Boulevard and Manchester Avenue.

Surface Street System

Figure 3.14-2 displays the existing roadway network in the study area (including number of travel lanes). The primary roadways that would provide access to the project site (and its parking facilities) are described below. Refer to Technical Memorandum \#2--Supplemental Information Regarding Existing Conditions in Appendix X for a full list and description of study roadways.

Figure 3.14-1 Study Intersections

Figure 3.14-2 Existing Roadway Network

- Prairie Avenue is designated as a major arterial in the City of Inglewood General Plan that runs north/south along the project frontages. The street provides two travel lanes in each direction north of Manchester Boulevard, and three travel lanes in each direction to the south of Manchester Boulevard. Raised medians are present in some locations between Arbor Vitae Street and Century Boulevard, and the street has a center turn lane. On-street parking is prohibited on both sides of the street in the project vicinity. The posted speed limit is 35 miles per hour (mph).
- Century Boulevard is designated as a major arterial in the City of Inglewood General Plan that runs east/west adjacent to the project site, providing three travel lanes in each direction with a center turn lane in the study area. On-street parking is prohibited on both sides of the street in the project vicinity. The posted speed limit is 40 mph .
- La Brea Avenue is designated as a major arterial in the City of Inglewood General Plan that runs north/south to the west of the project site. The street provides two travel lanes in each direction north of Spruce Avenue and three travel lanes in each direction with a raised median south of Spruce Avenue. La Brea Avenue also provides left turn pockets at major intersections. Parking is available on most blocks within the study area for both sides of the street. The posted speed limit is 35 mph . South of Century Boulevard, La Brea Avenue continues as Hawthome Boulevard.
- Hawthorne Boulevard is designated as a major arterial in the City of Inglewood General Plan that runs north/south to the west of the project site and provides three travel lanes in each direction with a raised median. Left turn pockets are provided at major intersections. Parallel parking is available on both sides of the street. The posted speed limit is 35 mph .
- Crenshaw Boulevard is designated as a major arterial in the City of Inglewood General Plan that runs north/south east of the project site and provides three travel lanes in each direction with left turn pockets at major intersections. Portions of Crenshaw Boulevard have raised medians. On street parking is provided both on frontage streets and on the main arterial. The posted speed limit is 40 mph .
- Manchester Boulevard is designated as a major arterial in the City of Inglewood General Plan. The street runs east/west north of the project site and provides two travel lanes in each direction west of Prairic Avenue and three lanes in each direction east of Prairic Avenue. There is a raised median on portions of the roadway. Parking is available on either side of the street west of Tamarack Avenue in the study area. The posted speed limit is 40 mph .

Several collector/local streets situated in the immediate project vicinity are also important to local circulation in the area and project access:

- $\quad 102^{\text {nd }}$ Street is designated as a local street in the City of Inglewood General Plan that runs east/west through the project site from Yukon Avenue to just west of Hawthome

Boulevard. It consists of one travel lane in each direction, and has fronting residences west of Prairie Avenue. Parallel parking is available on both sides of the street. The posted speed limit is 25 mph .

- $104^{\text {th }}$ Street is designated as a collector in the City of Inglewood General Plan that runs east/west south of the project site and provides one travel lane in each direction. It extends for nearly five miles between the I-405 and I-1 10 freeways. Residences front along the majority of this roadway, which also provides access to Morningside High School (located east of Yukon Avenue) and Dolores Huerta Elementary School (located west of Prairie Avenue). Parallel parking is available on both sides of the street. The posted speed limit is 25 mph .
- Doty Avenue is designated as a collector in the City of Inglewood General Plan that runs north/south east of the project site. It consists of one lane in each direction and has fronting residences along it with a posted speed limit is 30 mph It extends for about 1.2 miles, terminating just north of I-105. Parallel parking is available on both sides of the street. North of the Century Boulevard, Doty Avenue becomes an entry/exit to the Hollywood Park Specific Plan area.
- Yukon Avenue is designated as a collector in the City of Inglewood General Plan that runs north/south east of the project site. It consists of one lane in each direction and has a variety of adjacent land uses ranging front-on residential, a high school, and big box retail. It has a posted speed limit is 30 mph . It extends for about 1.4 miles, terminating just north of I-105. Parallel parking is available on portions, but not all of the street. North of the Century Boulevard, Yukon Avenue becomes an entry/exit to the Hollywood Park Specific Plan area.

Data Collection

Existing peak hour turning movement counts, bicycle counts, and pedestrian counts were collected at the majority of study intersections in April and May of 2018 during five peak periods. It was necessary to conduct additional counts in November 2018 due to an expanded list of study intersections.

- Weekday AM peak period (7:00-9:00 AM)
- Weekday PM peak period (4:00-6:00 PM)
- Weekday pre-event peak hour (6:00-7:00 PM)
- Weekday post-event hour (9:30-10:30 PM)
- Weekend pre-event hour (5:00-6:00 PM)

Weekday AM and PM counts were conducted on a Thursday, weekday pre- and post-event counts were conducted on a Friday, and weekend pre-event counts were conducted on a Saturday. Before intersection counts were taken, spot counts between weekdays (Thursday and Friday) and weekend days (Saturday and Sunday) were collected, which indicated that Friday and Saturday
are the busier days. Hence, use of Saturday counts from 5 to 6 PM to represent the Sunday afternoon study period are considered conservative.

All traffic counts were performed on days in which an event was not being held at the Forum, which is a concert venue located along Prairie Avenue about one mile north of the project site. Additionally, counts were conducted when adjacent schools were in session, and during dry weather conditions.

Intersection Operations

Study intersections are located within the Cities of Inglewood, Los Angeles, and Hawthome, as well as within unincorporated Los Angeles County. Additionally, some intersections are located within Caltrans right-of-way. This study applies the intersection analysis methods preferred by each jurisdiction for intersections within that jurisdiction. As is noted later, several intersections are located on the boundary between two agencies. In those instances, multiple analysis methods were used with all sets of results reported. Table 3.14-3 displays the intersection analysis methods selected for each jurisdiction.

Table 3.14-3
Intersection Analysis Methods

Jurisdiction	Peak Hour of Study	Analysis Method
City of Inglewood	Weekday AM and PM Peak Hours	Intersection Capacity Utilization (ICU) method
	Weekday Pre-Event and Post-Event Peak Hows Sunday Afternoon Peak Hour	Microsimulation using HCM methods :
Los Angeles County and City of Hawthome	All study periods	Intersection Capacity Utilization (ICU) method
City of Los Angeles	All study periods	Critical Movement Analysis (CMA) method
Caltrans	All study periods	HCM methods using Synchro sotmware
Notes: ${ }^{1}$ For intersections located outside of the limits of the microsimulation model area (see previous page for extent), analyses were performed using icu method. SOURCE: Fehr \& Peers, 2019.		

ICU/CMA Analvsis Methodology

The Intersection Capacity Utilization (ICU) and Critical Movement Analysis (CMA) methods are deterministic models that evaluate the critical movements at signalized intersection and then calculate the total 'per lane' critical movement volume, which is compared to the intersection's capacity to yield a volume-to-capacity (V/C) ratio. The level of service (LOS) is then determined based on the V/C ratio ranges shown in Table 3.14-4. LOS categories range from nearly frecflow traffic at LOS A to overloaded, stop-and-go conditions at LOS F. The ICU and CMA methods differ in certain ways, and so results are typically similar, but not necessarily consistent.

TABLE 3.14-4
Intersection Level of Service Definitions Using Icu/CMA Methods

Level of Service	Volume/Capacity (V/C) Ratio
A	$<0.60 \mathrm{~V} / \mathrm{C}$
B	$0.60-0.70 \mathrm{~V} / \mathrm{C}$
C	$0.701-0.80 \mathrm{~V} / \mathrm{C}$
D	$0.801-0.90 \mathrm{~V} / \mathrm{C}$
E	$0.901-1.00 \mathrm{~V} / \mathrm{C}$
F	$>1.00 \mathrm{~V} / \mathrm{C}$

NOTES: Applies only to signalized intersections.
SOURCE: Fehr \& Peers, 2019

HCM Analysis Methodology

The latest edition of the Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition (Transportation Research Board, 2016) provide guidance for analyzing both signalized and unsignalized intersections. Because CMA/ICU methods can only analyze signalized intersections, all unsignalized (stopcontrol) intersections are analyzed using HCM methods.

For signalized intersections, the intersection location and study period determines whether microsimulation (outlined in Chapter 7 of the HCM $6^{\text {th }}$ Edition) or the deterministic analysis method (outlined in Chapter 19 of the HCM $6^{\text {th }}$ Edition) are used. The deterministic analysis method (conducted using the Synchro software program) is used at all Caltrans ramp terminal intersections. Micro-simulation (conducted using the SimTraffic software program) is used for the pre-event and post-event peak hours along the Century Boulevard and Prairie Avenue study corridors (with 65 total intersections included within the model during the existing scenario, and 66 intersections during the baseline and cumulative scenarios, due to the signalization of Buckthom Street/Prairie Avenue with the buildout of Hollywood Park). The extent of the model was determined based on access to the project site and regional access using the I-105 and I-405 freeways. The remaining intersections located outside of the SimTraffic model extents, but within the City of Inglewood, were analyzed using the deterministic HCM methodology.

Refer to Table 3.14-5 for the delay range associated with each LOS category for signalized and unsignalized intersections. For signalized intersections and at all-way stop intersections, the reported delay is the weighted average of all vehicles passing through the intersection. At sidestreet stop-control intersections, the reported delay is the delay at the worst approach.

Microsimulation models can study the effects of coordinated signal timing plans, closely spaced intersections, queue spillbacks, lane blockages, and other considerations. They also account for the effects of queue spillbacks on upstream intersection operations. Inputs into SimTraffic included the volume of traffic traveling through the intersection, the lane geometries, the signal
phasing, and pedestrian volumes and interactions at the street crosswalks. Per standard practice, reported results are based on an average of 10 runs.

Table 3.14-5
Intersection Level of Service Definitions Using HCM Methods

Level of Service	Signalized Intersections	Unsignalized Intersections
A	$0-10.0$ secs/veh	$0-10.0$ secs/veh
B	$10.1-20.0$ secs/veh	$10.1-15.0$ secs/veh
C	$20.1-35.0$ secs/veh	$15.1-25.0$ secs/veh
D	$35.1-55.0$ secs/veh	$25.1-35.0$ secs/veh
E	$55.1-80.0$ secs/veh	$35.1-50.0$ secs/veh
F	>80.0 secs/veh	>50.0 secs/veh
NOTES: Control delay includes initial deceleration delay, queue move-up time, stopped delay, and		
acceleration delay.		
SOURCE: Transportation Research Board, 6h Edition, 2016.		

Refer to Technical Memorondum \#2-Supplemental Information Regarding Existing Conditions (in Appendix X) for a more detailed description of these intersection analysis methods. This memorandum also includes an extensive description of the micro-simulation model validation process (needed such that the existing conditions model closely matches observed conditions, both in terms of recurring vehicle queuing, average travel time, and number of vehicles served per hour).

Figure 3.14-3 displays the existing weekday AM and PM peak hour traffic volumes, controls, and lane configurations at the 43 study intersections analyzed for this peak hour. Figure 3.14-4 displays the existing weekday pre-event and post-event peak hour traffic volumes for the entire 114 study intersections studied under this scenario. Figure 3.14-5 displays the existing weekend aftemoon peak hour traffic volumes at the 114 study intersections.

Table 3.14-6 displays the LOS and average delay or V/C ratio at the 43 intersections selected for analysis under weekday AM and PM peak hour conditions (see Appendix. X for technical calculations). As shown in the table, seven of the 43 study intersections are currently operating at poor levels of service (i.e., LOS E or F) during at least one of the analyzed peak hours:
14. Prairie Avenue/Manchester Boulevard
19. Prairic Avenue/Kelso Strect/Pincay Drive
31. La Cienega Boulevard/Interstate $405 \mathrm{on} / \mathrm{fff}$ ramp (north of Century Boulevard)
34. La Cienega Boulevard/Century Boulevard
35. Interstate 405 on/off ramp/Century Boulevard
37. Inglewood Boulevard/Century Boulevard
78. Prairie Avenue/Imperial Highway

Figure 3.14-3 Existing Weekday AM and PM Peak Hour Volumes (page 1)
11 by 17

Figure 3.14-3 Existing Weekday AM and PM Peak Hour Volumes (page 2)
11 by 17

Figure 3.14-4 Existing Weekday Pre-Event and Post-Event Peak Hour Volumes (page 1)
11×17

Figure 3.14-4 Existing Weekday Pre-Event and Post-Event Peak Hour Volumes (page 2)
11×17

Figure 3.14-4 Existing Weekday Pre-Event and Post-Event Peak Hour Volumes (page 3)
11×17

Figure 3.14-5 Existing Weekend Afternoon Peak Hour Volumes (page 1)
11 by 17

Figure 3.14-5 Existing Weekend Afternoon Peak Hour Volumes (page 3)
11 by 17

Figure 3.14-5 Existing Weekend Afternoon Peak Hour Volumes (page 3)
11 by 17

Table 3.14-6
Intersection Operations - Existing Weekday Am and PM Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{\text {a }}$	Peak Hour	V/C or Delay	LOS
14	Prairie Ave/ Manchester Blvd	1 CU	Inglewood	AM	0.923	E
				PM	0.928	E
19	Prairie Ave/ Kelso St/Pincay Dr	1 CU	Inglewood	AM	0.762	C
				FM	1.109	F
25	Prairie Ave/ Arbor Vitae St	ICU	Inglewood	AM	0.525	A
				PM	0.659	B
27	Myrtle Ave/ Hardy St	1 CU	Inglewood	AM	0.382	A
				PM	0.388	A
28	Prairie Ave/ Hardy St	ICU	Inglewood	AM	0.446	A
				FM	0.544	A
29	Crenshaw Blvd/ Hardy St	ICU	Inglewood	AM	0.572	A
				PM	0.547	A
31	La Cienega Blvd/ $405 \mathrm{On} / \mathrm{Off}$ Ramps (n / o Century)	ICU	Inglewood	AM	0.916	E
				PM	0.814	D
		CMA	City of Los Angeles	AM	0.729	C
				PM	0.585	A
		HCM	Caltrans	AM	18.5	B
				PM	18.7	B
32	Prairie Ave/ $97^{\text {th }} \mathrm{St}$	1 CU	Inglewood	AM	0.397	A
				FM	0.458	A
34	La Cienega Blvd/ Century Blvd	ICU	Inglewood	AM	1.081	F
				PM	0.728	C
		CMA	City of Los Angeles	AM	1.043	F
				PM	0.714	C
35	405 On/Off Ramp/ Century Blvd	1 CU	Inglewood	AM	0.930	E
				PM	0.719	C
		HCM	Caltrans	AM	28.2	C
				PM	17.9	B
36	Felton Ave/ Century Blvd	ICU	Inglewood	AM	0.554	A
				PM	0.700	B
37	Inglewood Ave/ Century Blvd	1 CU	Inglewood	AM	0.854	D
				PM	0.908	E
38	Fir Ave/Firmona Ave/Century Blvd	1 CU	Inglewood	AM	0.563	A
				PM	0.589	A
39	Grevillea Ave/ Century Blvd	ICU	Inglewood	AM	0.608	B
				PM	0.580	A
40	Hawthome Blvd/La Brea Blvd/Century Blvd	ICU	Inglewood	AM	0.860	D
				PM	0.843	D
41	Myrtle Ave/ Century Blvd	1 CU	Inglewood	AM	0.501	A
				PM	0.523	A
42	Freeman Ave Century Blyd	ICU	Inglewood	AM	0.451	A
				PM	0.517	A
43	Prairie Ave/ Century Blvd	ICU	Inglewood	AM	0.704	C
				FM	0.839	D
44	Doty Ave/ Century Blvd	ICU	Inglewood	AM	0.375	A
				PM	0.459	A
45	Yukon Ave/ Century Blvd	ICU	Inglewood	AM	0.402	A
				PM	0.690	B
46	Club Dr/	ICU	Inglewood	AM	0.522	A

[PAGE]

Table 3.14-6
Intersection Operations - Existing Weekday am and PM Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{\text {' }}$	Peak Hour	VIC or Delay	LOS
	Century Blvd			FM	0.643	B
47	$11^{\text {th }}$ Ave/Village Ave/ Century Blvd	ICU	Inglewood	AM	0.461	A
				PM	0.714	C
48	Crenshaw Blvd/ Century Blvd	ICU	Inglewood	AM	0.576	A
				PM	0.765	C
49	$5^{\text {th }}$ Ave/ Century Blvd	1 CU	Inglewood	AM	0.766	C
				PM	0.576	A
50	Van Ness Ave/ Century Blvd	1 CU	Inglewood	AM.	0.700	B
				PM	0.757	C
		CMA	City of Los Angeles	AM	0.640	B
				PM	0.701	C
53	La Cienega Blvd/ 405 On/Off Ramps (s / o Century)	CMA	City of Los Angeles	AM	0.516	A
				PM	0.468	A
		ICU	Inglewood	AM	0.669	B
				PM	0.607	B
		HCM	Caltrans	AM	15.4	B
				FM	14.1	B
54	Prairie Ave/ $102{ }^{\text {nd }}$ St	1 CU	Inglewood	AM	0.517	A
				PM	0.546	A
55	Doty Ave/ $102^{\text {nd }} \mathrm{St}$	HCM	Inglewood	AM	9.0	A
				PM	9.3	A
56	Yukon Ave/102 ${ }^{\text {nd }} \mathrm{St}$	HCM	Inglewood	AM	14.5	B
				PM	23.1	C
59	Hawthome Blvd/ $104^{\text {th }}$ St	1 CU	Inglewood/Los Angeles County	AM	0.590	A
				PM	0.686	B
60	Prairie Ave/104 ${ }^{\text {th }} \mathrm{St}$	ICU	Inglewood	AM	0.588	A
				FM	0.626	B
61	Doty Ave/104 ${ }^{\text {th }}$ St	HCM	Inglewood	AM	9.7	A
				PM	10.1	A
62	Yukon Ave/104 ${ }^{\text {th }} \mathrm{St}$	ICU	Inglewood	AM	0.655	B
				PM	0.577	A
63	Crenshaw Blvd/ $104^{\text {th }} \mathrm{St}$	1 CU	Inglewood	AM	0.663	B
				FM	0.618	B
66	Freeman Ave Lennox Blvd	1 CU	Inglewood	AM	0.523	A
				PM	0.434	A
67	Prairie Ave/ Lennox Blyd	ICU	Inglewood	AM	0.617	B
				PM	0.695	B
68	Prairie Ave/108th St	1 CU	Inglewood	AM	0.585	A
				PM	0.559	A
69	Yukon Ave/108th St	1 CU	Inglewood	AM	0.482	A
				PM	0.513	A
72	Prairie Ave/ $111^{\text {th }} \mathrm{St}$	ICU	Inglewood	AM	0.670	B
				PM	0.609	B
75	Prairic Ave/ $112^{\mathrm{d}} \mathrm{SV}$ 105 On Ramp	ICU	Inglewood	AM	0.687	B
				PM	0.845	D
		HCM	Caltrans	AM	15.7	B
				PM	26.0	C
77	Freeman Ave/ 105 On Ramp/Imperial Hwy	ICU	Hawthome	AM	0.628	B
				PM	0.763	C
		HCM	Caltrans	AM	148	B

[PAGE]

Table 3.14-6
Intersection Operations - Existing Weekday AM and PM Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{\text {a }}$	Peak Hour	V/C or Delay	LOS
				FM	14.3	B
78	Prairie Ave/	ICU	Inglewood	AM	0.926	E
	Imperial Hwy		Hawthome	PM	0.874	D
89	Hollywood Park Casino	1 CU	Inglewood	AM	0.367	A
	Driveway/Century Blvd			PM	0.433	A
Notes:						
${ }^{1}$ Anal ${ }^{2}$ Each inglew SOUR	s methods vary by jurisdictio of the above intersections ar od. They were analyzed using E: Fehr \& Peers, 2019.	fer to previous pages alized with exception M methods.	description). 55, 56, and 61, which	re stop-control	located	

Table 3.14-7 displays the LOS and average delay or V/C ratio at the 114 intersections selected for analysis under weekday pre-event and post-event peak hour conditions, and weekend preevent peak hour conditions (see Appendix X for technical calculations). As shown in the table, the following intersections currently operate at LOS E or F during the weekday pre-event peak hour:
3. Hillcrest Boulevard/Florence Avenue
5. Prairie Avenue/Florence Avenue
6. West Boulevard/Florence Avenue
16. Crenshaw Boulevard/Manchester Boulevard
84. Prairie Avenue/ $120^{\text {th }}$ Street
97. Van Ness Avenue/Manchester Boulevard
108. La Cienega Boulevard/Centinela Avenue
111. La Cienega Boulevard/Stocker Street
112. La Brea Avenue/Overhill Drive/Stocker Street

During the weekday post-event peak hour, all study intersections operate at LOS D or better. During the weekend pre-event peak hour, the La Cienega Boulevard/Centinela Avenue intersection operates at LOS E while all other study intersections operate at LOS D or better.

It is important to note that some of the intersections listed above as operating at LOS E or F on a weekday from $6-7$ PM (i.e., pre-event peak hour) are reported in Table 3.14-6 as operating at LOS D or better during the weekday PM peak hour, which occurs between 4 and 6 PM. This stems from the use of agency-preferred ICU/CMA analysis methods for the weekday PM peak hour, but use of HCM (and particular micro-simulation) during the pre-event peak hour.

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
1	La Cienega Blvd/Florence Ave	ICU	Inglewood	Weekday Pre-Event	0.795	C
				Weekday Post-Event	0.573	A
				Weekend Pre-Event	0.663	B
2	La Brea Ave/ Florence Ave	ICU	Inglewood	Weekday Pre-Event	0.668	B
				Weekday Post-Event	0.391	A
				Weekend Pre-Event	0.552	A
3	Hillcrest Blvd/ Florence Ave	HCM	Inglewood	Weekday Pre-Event	94.7	F
				Weekday Post-Game	6.5	A
				Weekend Pre-Event	9.0	A
4	Centinela Ave/ Florence Ave	HCM	Inglewood	Weekday Pre-Event	50.0	D
				Weekday Post-Game	11.7	B
				Weekend Pre-Event	17.8	B
5	Prairie Ave/Florence Ave	HCM	Inglewood	Weekday Pre-Event	65.6	E
				Weekday Post-Game	138	B
				Weekend Pre-Event	22.5	C
6	West Blvd/ Florence Ave	ICU	Inglewood	Weekday Pre-Event	0.929	E
				Weekday Post-Event	0.583	A
				Weekend Pre-Event	0.816	D
		CMA	City of Los Angeles	Weekday Pre-Event	0.785	C
				Weekday Post-Event	0.415	A
				Weekend Pre-Event	0.665	B
7	Prairie Ave/ Grace Ave	HCM	Inglewood	Weekday Pre-Event	4.7	A
				Weekday Post-Event	1.7	A
				Weekend Pre-Event	2.7	A
8	Prairie Ave East Carondelet Way	HCM	Inglewood	Weekday Pre-Event	4.7	A
				Weekday Post-Event	3.8	A
				Weekend Pre-Event	40	A
9	Prairie Ave/ E Regent Street	HCM	Inglewood	Weekday Pre-Event	8.6	A
				Weekday Post-Event	4.4	A
				Weekend Pre-Event	6.0	A
10	La Cienega Blvd Manchester Blvd	ICU	Inglewood	Weekday Pre-Event	0.617	B
				Weekday Post-Event	0.487	A
				Weekend Pre-Event	0.560	A
11	La Brea Ave/ Manchester Blvd	ICU	Inglewood	Weekday Pre-Event	...708	C
				Weekday Post-Event	0.406	A
				Weekend Pre-Event	0.578	A
12	Hillcrest Blvd/ Manchester Elvd	HCM	Inglewood	Weekday Pre-Event	18.6	B
				Weekday Post-Event	9.8	A
				Weekend Pre-Event	10.8	B
13	Spruce Ave/ Manchester Blvd	HCM	Inglewood	Weekday Pre-Event	10.1	B
				Weekday Post-Event	5.3	A
				Weekend Pre-Event	63	A
14	Prairie Ave/ Manchester Blvd	HCM	Inglewood	Weekday Pre-Event	43.1	D
				Weekday Post-Event	22.8	C
				Weekend Pre-Event	29.4	C
15	Kareem Ct/ Manchester Blvd	HCM	Inglewood	Weekday Pre-Event	9.6	A
				Weekday Post-Event	5.1	A
				Weekend Pre-Event	6.6	A
16	Crenshaw Blvd	ICU	Inglewood	Weekday Pre-Event	0.939	E
	Manchester Plvd			Weekday Post-Event	0.501	A

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
17	La Brea Ave/ Hillcrest Blvd	ICU	Inglewood	Weekend Pre-Event	0.752	C
				Weekday Pre-Fvent	0.548	A
				Weekday Post-Event	0.247	A
				Weekend Pre-Event	0.381	A
18	Market St/La Brea Ave	ICU	Inglewood	Weekday Pre-Event	0.455	A
				Weekday Post-Event	0.253	A
				Weekend Pre-Event	0.394	A
19	Prairie Ave/ Kelso St/ Fincay Dr	HCM	Inglewood	Weekday Pre-Event	24.6	C
				Weekday Post-Event	103	B
				Weekend Pre-Event	13.0	B
20	Kareem Ct Pincay Dr	HCM	Inglewood	Weekday Pre-Event	6.6	A
				Weekday Post-Event	3.8	A
				Weekend Pre-Event	4.6	A
21	La Cienega Blvd/ Arbor Vitae St	HCM	Inglewood/City of Los Angeles	Weekday Pre-Event	21.4	C
				Weekday Post-Event	16.7	B
				Weekend Pre-Event	17.7	B
22	Inglewood Ave/ Arbor Vitae St	HCM	Inglewood	Weekday Pre-Event	36.4	D
				Weekday Post-Event	18.3	B
				Weekend Pre-Event	24.5	C
23	La Brea Ave/ Arbor Vitae St	HCM	Inglewood	Weekday Pre-Event	25.0	C
				Weekday Post-Event	18.2	E
				Weekend Pre-Event	22.9	C
24	Myrtle Avé Arbor Vitae St	HCM	Inglewood	Weekday Pre-Event	108	E
				Weekday Post-Event	7.7	A
				Weekend Pre-Event	89	A
25	Prairie Ave/ Atbor Vitae St	HCM	Inglewood	Weekday Pre-Event	19.6	B
				Weekday Post-Event	12.4	B
				Weekend Pre-Event	13.4	E
26	La Brea Ave/ Hardy St	HCM	Inglewood	Weekday Pre-Event	15.9	B
				Weekday Post-Event	10.6	B
				Weekend Pre-Event	12.8	B
27	Myrtle Ave Hardy St	HCM	Inglewood	Weekday Pre-Event	9.7	A
				Weekday Post-Event	6.6	A
				Weekend Pre-Event	8.1	A
28	Prairie Ave/ Hardy St	HCM	Inglewood	Weekday Pre-Event	10.8	B
				Weekday Post-Event	11.2	B
				Weekend Pre-Event	103	B
29	Crenshaw Blvd Hardy St	HCM	Inglewood	Weekday Pre-Event	10.3	B
				Weelday Post-Event	68	A
				Weekend Pre-Event	8.5	A
30	Van Ness Ave/ Hardy St/ $96^{\text {th }} \mathrm{St}$	ICU	Inglewood	Weekday Pre-Event	0.546	A
				Weekday Post-Event	0.326	A
				Weekend Fre-Event	0.455	A
		CMA	City of Los Angeles	Weekday Pre-Event	0.475	A
				Weekday Post-Event	0.240	A
				Weekend Pre-Event	0.379	A
31	La Cienega Blvd/ 405 On/Off Ramps (n/o	HCM	Inglewood/	Weekday Pre-Event	22.6	C
			City of Los	Weekday Post-Event	15.7	E

[PAGE]

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
32	Century)	HCM	Angeles/ Caltrans	Weekend Pre-Event	14.5	B
	Prairie Ave/ $97^{\text {th }} \mathrm{St}$			Weekday Pre-Fvent	4.9	A
			Inglewood	Weekday Post-Event	3.8	A
				Weekend Pre-Event	3.8	A
33	Concourse Way/ Century Blvd	HCM	City of Los Angeles	Weekday Pre-Event	11.0	B
				Weekday Post-Event	10.0	B
				Weekend Pre-Event	11.5	B
34	La Cienega Blvd $/$ Century Blvd	HCM	Inglewood City of Los Angeles/ County of Los Angeles	Weekday Pre-Event	31.3	C
				Weekday Post-Event	22.8	C
				Weekend Pre-Event	25.0	C
35	405 On/Off Ramp/ Century Blvd	HCM	Inglewood/ Caltrans	Weekday Pre-Event	13.1	B
				Weelsday Post-Event	13.3	B
				Weekend Pre-Event	12.7	B
36	Felton Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	13.9	B
				Weekday Post-Event	13.3	B
				Weekend Pre-Event	11.3	B
37	Inglewood Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	44.0	D
				Weekday Post-Event	14.6	B
				Weekend Pre-Event	23.0	C
38	Fir Ave/ Firmona Ave Century Blvd	HCM	Inglewood	Weekday Pre-Event	8.1	A
				Weekday Post-Event	6.3	A
				Weekend Pre-Event	6.4	A
39	Grevillea Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	9.2	A
				Weelday Fost-Event	63	A
				Weekend Pre-Event	6.3	A
40	Hawthorne Blvd La Brea Blvd/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	52.9	D
				Weekday Post-Event	259	C
				Weekend Pre-Event	31.6	C
41	Myrte Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	12.2	B
				Weekday Post-Event	6.4	A
				Weekend Pre-Event	79	A
42	Freeman Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	8.3	A
				Weekday Post-Event	6.1	A
				Weekend Pre-Event	7.1	A
43	Prairie Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	50.1	D
				Weelday Post-Event	26.2	C
				Weekend Pre-Event	39.9	D
44	Doty Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	17.7	B
				Weekday Post-Event	13.4	B
				Weekend Pre-Event	15.9	B
45	Yukon Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	22.9	C
				Weekday Post-Event	11.2	B
				Weekend Pre-Event	17.3	B
46	Club Dr/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	36.4	D
				Weekday Post-Event	22.8	C
				Weekend Pre-Event	33.0	C

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
47	$11^{\text {th }}$ Ave/ Village Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Event	39.5	D
				Weekday Post-Event	20.1	c
				Weekend Pre-Event	33.6	C
48	Crenshaw Blyd Century Blvd	HCM	Inglewood	Weekday Pre-Event	43.0	D
				Weekday Post-Event	31.3	C
				Weekend Pre-Event	35.1	D
49	$5^{\text {th }}$ Ave/ Century Blvd	HCM	Inglewood	Weekday Pre-Fvent	11.8	B
				Weelday Post-Event	10.0	A
				Weekend Pre-Event	11.0	E
50	Van Ness Ave/ Century Blvd	ICU	Inglewood/Los Angeles County	Weekday Pre-Event	0.708	C
				Weekday Post-Event	0.384	A
				Weekend Pre-Event	0.608	B
		CMA	City of Los Angeles	Weekday Pre-Event	0.648	B
				Weekday Post-Event	0.303	A
				Weekend Pre-Event	0.541	A
51	Gramercy PI/ Century Blvd	ICU	Los Angeles County	Weekday Pre-Event	0.351	A
				Weekday Post-Event	0.230	A
				Weekend Pre-Event	0.324	A
		CMA	City of Los Angeles	Weekday Pre-Event	0.167	A
				Weelday Post-Event	0.070	A
				Weekend Pre-Event	0.139	A
52	Westem Ave/ Century Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.653	B
				Weekday Post-Event	0.284	A
				Weekend Pre-Event	0.530	A
53	La Cienega Blvd/ 405 On/Off Ramps (s/o Century)	HCM	Inglewood/Los Angeles County/Caltrans/Ci ty of Los Angeles	Weekday Pre-Event	9.6	A
				Weekday Post-Event	8.6	A
				Weekend Pre-Event	8.4	A
54	Prairie Ave/ $102^{\text {24 }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	10.6	B
				Weekday Post-Event	59	A
				Weekend Pre-Event	8.5	A
55	Doty Ave $102^{\text {nd }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	67	A
				Weekday Post-Event	5.8	A
				Weekend Pre-Event	6.5	A
56	Yukon Ave/ $102^{\text {nd }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	13.3	B
				Weekday Post-Event	8.2	A
				Weekend Pre-Event	12.2	B
57	La Cienega Blvd' $104^{\text {th }} \mathrm{St}$	HCM	Los Angeles County/City of Los Angeles	Weekday Pre-Event	9.6	A
				Weekday Post-Event	57	A
				Weekend Pre-Event	7.2	A
58	Inglewood Ave $104^{\text {th }} \mathrm{St}$	HCM	Los Angeles County	Weekday Pre-Event	17.6	B
				Weekday Post-Event	8.0	A
				Weekend Fre-Event	14.2	B
59	Hawthome Blvd/ $104^{\text {th }} \mathrm{St}$	HCM	Inglewood/Los Angeles County	Weekday Pre-Event	26.4	C
				Weekday Post-Event	16.3	B
				Weekend Pre-Event	21.3	C
60	Prairie Ave/ $104^{\text {th }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	22.7	C
				Weekday Post-Event	9.5	A

[PAGE]

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
61	Doty Ave/ $104{ }^{\text {ti }} \mathrm{St}$	HCM	Inglewood	Weekend Pre-Event	12.0	B
				Weekday Pre-Fvent	85	A
				Weekday Post-Event	7.0	A
				Weekend Pre-Event	7.3	A
62	Yukon Ave/104 ${ }^{\text {th }}$ St	HCM	Inglewood	Weekday Pre-Evert	15.7	B
				Weekday Post-Event		A
				Weekend Pre-Event	13.0	B
63	$\begin{aligned} & \text { Crenshaw Blvd } \\ & 104^{\text {th }} \mathrm{St} \end{aligned}$	HCM	Inglewood	Weekday Pre-Event	36.6	D
				Weekday Post-Event	14.3	E
				Weekend Pre-Event	18.6	B
64	Van Ness Ave/ $104^{\text {th }} \mathrm{St}$	ICU	Inglewood/Los Angeles County	Weekday Fre-Event	0.519	A
				Weekday Post-Event	0.299	A
				Weekend Pre-Event	0.423	A
65	Hawthorne Blvd/ Lennox Blvd	ICU	Los Angeles County	Weekday Pre-Event	0.689	B
				Weekday Post-Event	0.442	A
				Weekend Pre-Event	0.596	A
66	Freeman Ave/ Lennox Blvd	HCM	Los Angeles County	Weekday Pre-Event	8.6	A
				Weekday Post-Event	55	A
				Weekend Pre-Event	6.0	A
67	Prairie Ave/ Lemox Blyd	HCM	Inglewood	Weekday Pre-Event		C
				Weekday Post-Event	5.7	A
				Weekend Pre-Event	8.1	A
68	Prairie Ave/108th St	HCM	Inglewood	Weekday Pre-Event	135	B
				Weekday Post-Event	7.1	A
				Weekend Pre-Event	8.6	A
69	Yukon Ave/108th St	HCM	Inglewood	Weekday Pre-Event	9.9	A
				Weekday Post-Event	6.6	A
				Weekend Pre-Event	8.7	A
70	$\begin{aligned} & \text { Crenshaw Blvd } \\ & 109^{\text {sh }} \mathrm{St} \end{aligned}$	ICU	Inglewood	Weekday Pre-Event	0.467	A
				Weekday Post-Event	0.281	A
				Weekend Pre-Event	0.415	A
71	Hawthome Blvd/ $111^{\text {䨋 }} \mathrm{St}$	ICU	Hawthome/Los Angeles County	Weekday Pre-Event	0.691	B
				Weekday Post-Event	0.376	A
				Weekend Pre-Event	0.560	A
72	Prairie Ave/ $111^{\text {di }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	17.4	B
				Weekday Post-Event	9.8	A
				Weekend Pre-Event	125	B
73	Yukon Ave/111 ${ }^{\text {ta }} \mathrm{St}$	HCM	Inglewood	Weekday Pre-Event	9.1	A
				Weekday Post-Event	72	A
				Weekend Pre-Event	8.1	A
74	Hawthome Blvd/ WB 105 Off Ramp	ICU	Hawthome	Weekday Pre-Event	0.701	C
				Weekday Post-Event	0.452	A
				Weekend Fre-Event	0.584	A
75	Prairie Ave/ $112^{\text {th }} \mathrm{St} /$ 105 On Ramp	HCM	Inglewood Caltrans	Weekday Pre-Event	34.1	C
				Weekday Post-Event	17.8	B
				Weekend Pre-Event	349	C
76	Hawthome Blvd/ Imperial Hwy	ICU	Hawthome	Weekday Pre-Event	0.754	C
				Weekday Post-Event	0.390	A

[PAGE]

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
77	Freeman Ave/ 105 On Ramp/ Imperial Hwy	HCM	Inglewood/ Caltrans	Weekend Pre-Event	0.561	A
				Weekday Pre-Event	26.1	C
				Weekday Post-Event	14.6	B
				Weekend Pre-Event	17.9	E
78	Prairie Ave/ Imperial Hwy	HCM	Inglewood/ Hawthome	Weekday Pre-Event	49.0	D
				Weekday Post-Event	22.2	C
				Weekend Pre-Event	33.6	C
79	Doty Ave/ Imperial Hwy	HCM	Inglewood/ Hawthorne	Weekday Pre-Event	15.0	B
				Weekday Post-Event	95	A
				Weekend Pre-Event	11.8	B
80	Yukon Ave/ Imperial Hwy	HCM	Inglewood	Weekday Pre-Event	16.0	B
				Weekday Post-Event	8.4	A
				Weekend Pre-Event	12.0	B
81	Crenshaw Blyd Imperial Hwy	ICU	Inglewood	Weekday Pre-Event	0.788	C
				Weekday Post-Event	0.439	A
				Weekend Pre-Event	0.716	C
82	Prairie Ave/118 ${ }^{\text {th }}$ St	HCM	Hawthorne	Weekday Pre-Event	29.6	C
				Weekday Post-Event	13.9	B
				Weekend Pre-Event	15.6	B
83	Crenshaw Blvd/ 105 Off Ramp/ $118^{45} \mathrm{Pl}$	ICU	Hawthome	Weekday Pre-Event	0.744	C
				Weekday Post-Event	0.565	A
				Weekend Pre-Event	0.739	C
84	Prairie Ave/120 ${ }^{\text {方 St }}$	HCM	Hawthorne	Weekday Pre-Event	63.8	E
				Weekday Post-Event	17.8	B
				Weekend Pre-Event	25.9	C
85	105 On/Off Ramp/ $120^{\text {th }} \mathrm{St}$	ICU	Hawthome	Weekday Pre-Event	0.704	C
				Weekday Post-Event	0.630	B
				Weekend Pre-Event	0.797	C
86	Crenshaw Blvd/ $120^{\text {m }}$ Street	ICU	Hawthome	Weekday Pre-Event	0.728	C
				Weekday Post-Event	0.566	A
				Weekend Pre-Event	0.708	C
87	La Cienega Blvd/ Lennox Blvd	ICU	Los Angeles County	Weekday Pre-Event	0.412	A
				Weekday Post-Event	0.248	A
				Weekend Pre-Event	0.284	A
		CMA	City of Los Angeles	Weekday Pre-Event	0.244	A
				Weekday Post-Event	0.079	A
				Weekend Pre-Event	0.098	A
88	Inglewood Ave/ Lemnox Blvd	ICU	Los Angeles County	Weekday Pre-Event	0.787	C
				Weekday Post-Event	0.444	A
				Weekend Pre-Event	0.648	B
89	Hollywood Park Casino Driveway Century Blvd	HCM	Inglewood	Weekday Pre-Event	10.5	B
				Weekday Post-Event	8.4	A
				Weekend Fre-Event	11.3	B
90	Prairie Ave/ Buckthorn Street	HCM	Inglewood	Weekday Pre-Event	Intersection not included in Existing Conditions ${ }^{3}$	
				Weekday Post-Event		
				Weekend Pre-Event		
91	Normandie Ave/	ICU	Los Angeles County	Weekday Pre-Event	0.834	D
	Century Ave			Weekday Post-Event	0.470	A

[PAGE]

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
92	Vermont Ave/ Century Ave	ICU	Los Angeles County	Weekend Pre-Event	0.706	C
				Weekday Pre-Event	0.728	C
				Weekday Post-Event	0.422	A
				Weekend Pre-Event	0.615	E
		CMA	City of Los Angeles	Weekday Pre-Event	0.616	B
				Weekday Post-Event	0.267	A
				Weekend Pre-Event	0.488	A
93	Hoover St Century Ave	CMA	City of Los Angeles	Weekday Pre-Event	0.451	A
				Weekday Post-Event	0.155	A
				Weekend Pre-Event	0.371	A
94	Figueroa St/ Century Ave	CMA	City of Los Angeles	Weekday Pre-Event	0.656	B
				Weekday Post-Event	0.291	A
				Weekend Pre-Event	0.523	A
95	Grand Ave/ 110 SB Off Ramp/ Century Ave	CMA	City of Los Angeles	Weekday Pre-Event	0.365	A
				Weekday Post-Event	0.209	A
				Weekend Pre-Event	0300	A
96	Olive Sti 110 NB On Ramp/ Century Ave	CMA	City of Los Angeles	Weekday Pre-Event	0.367	A
				Weekday Post-Event	0.208	A
				Weekend Pre-Event	0.323	A
97	Van Ness Avel Manchester Blvd	ICU	Inglewood	Weekday Pre-Event	0.965	E
				Weekday Post-Event	0.521	A
				Weekend Pre-Event	0.820	D
		CMA	City of Los Angeles	Weekday Pre-Event	0.822	D
				Weekday Post-Event	0.347	A
				Weekend Pre-Event	0.667	B
98	Western Ave/ Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.875	D
				Weekday Post-Event	0.404	A
				Weekend Pre-Event	0.736	C
99	Normandie Ave/ Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.639	B
				Weekday Post-Event	0.317	A
				Weekend Pre-Event	0.512	A
100	Vermont Ave/ Manchester Elvd	CMA	City of Los Angeles	Weekday Pre-Event	0.653	B
				Weekday Post-Event	0.370	A
				Weekend Pre-Event	0.512	A
101	Hoover St Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.585	A
				Weekday Post-Event	0.309	A
				Weekend Pre-Event	0.491	A
102	Figueroa St/ Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.790	C
				Weekday Post-Event	0.557	A
				Weekend Pre-Event	0.612	E
103	110 SB On/Off Ramps/ Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.479	A
				Weekday Post-Event	0.472	A
				Weekend Fre-Event	0.401	A
104	110 NB On/Off Ramps/ Manchester Blvd	CMA	City of Los Angeles	Weekday Pre-Event	0.487	A
				Weekday Post-Event	0.379	A
				Weekend Pre-Event	0.487	A
105	Crenshaw Blvd/ Fincay Dr	ICU	Inglewood	Weekday Pre-Event	0.642	B
				Weekday Post-Event	0.283	A

[PAGE]

Table 3.14-7
Intersection Operations - Existing Pre-Event and Post-Event Peak Hour Conditions

\#	Intersection	Methodology ${ }^{1,2}$	Jurisdiction ${ }^{1}$	Peak Hour	V/C or Delay	LOS
106	Crenshaw Blvd Florence Ave	CMA	City of Los Angeles	Weekend Pre-Event	0.609	B
				Weekday Pre-Event	0.699	B
				Weekday Post-Event	0.307	A
				Weekend Pre-Event	0.551	A
107	La Brea Ave/ Centinela Ave	ICU	Inglewood	Weekday Pre-Evert	0.884	D
				Weekday Post-Event	0.431	A
				Weekend Pre-Event	0.755	C
108	La Cienega Blvd/ Centinela Ave	ICU	Inglewood	Weekday Pre-Event	0.925	E
				Weekday Post-Event	0.652	B
				Weekend Pre-Event	0.950	E
		CMA	City of Los Angeles	Weekday Pre-Event	0.859	D
				Weekday Post-Event	0.542	A
				Weekend Pre-Event	0.889	D
109	La Cienega Blvd/ La Tijera Blvd	ICU	Inglewood	Weekday Pre-Event	0.808	D
				Weekday Post-Event	0.523	A
				Weekend Pre-Event	0.787	c
		CMA	City of Los Angeles	Weekday Pre-Event	0.619	B
				Weekday Post-Event	0.333	A
				Weekend Pre-Event	0.605	B
110	La Brea Ave/ Slauson Ave	ICU	Los Angeles County	Weekday Pre-Event	0.867	D
				Weekday Post-Event	0.500	A
				Weekend Pre-Event	0.727	C
111	La Cienega Blvd/ Stocker St	ICU	Los Angeles County	Weekday Pre-Event	0.954	E
				Weekday Post-Event	0.594	A
				Weekend Pre-Event	0.899	D
112	La Brea Ave/ Overhill Drive/ Stocker St	ICU	Los Angeles County	Weekday Pre-Event	1.025	F
				Weekday Post-Event	0.549	A
				Weekend Pre-Event	0.798	C
113	Crenshaw Dr/ Manchester Blvd	ICU	Inglewood	Weekday Pre-Event	0.571	A
				Weekday Post-Event	0.351	A
				Weekend Pre-Event	0.452	A
114	Manchester Blvd/ Ash $\mathrm{St} / \mathrm{I}-405 \mathrm{NB}$ OffRamp	ICU	Inglewood	Weekday Pre-Event	Te le mumerai next sumulu	
				Weekday Post-Event		
				Weekend Pre-Event		

Analysis methods vary by jurisdiction (refer to previous pages for description).
Each of the above intersections are signalized with exception of 55,56 , and 61 , which feature stop-control and are located within inglewood. They were analyzed using HCM methods.
Inglewood. They were analyzed using HCM methods.
a Prairie Avenue/Buckthorn Street intersection is currently under signalized wseseec wimes sompen (and not analyzed for

SOURCE: Fehr \& Peers, 2019.

Freeways

Freeway mainline analysis were conducted using Caltrans Performance Measurement System (PeMS) highway count data from April 2018 at various locations in the project vicinity including:

- Interstate 405
- North of Florence Avenue
- Between Century Boulevard and I-105
- South El Segundo Boulevard
- Interstate 105
- West of I-405
- Between I-405 and Hawthorne Boulevard
- Between Hawthome Boulevard and Prairie Avenue
- Between Prairie Avenue and Crenshaw Boulevard
- Between Crenshaw Boulevard and Vermont Avenue
- Between Vermont Avenue and I-110
- Interstate 110
- North of Manchester Avenue
- South of I-105

The freeway level of service methodology described in the HCM, $\sigma^{\text {th }}$ Edition (2016) was used to determine the vehicle density on each analyzed segment (passenger cars equivalents per mile per lane per hour) by direction and the corresponding LOS.

Table 3.14-8 shows the existing LOS on freeway mainline segments. All freeway mainine segments operate at LOS E or F during at least one period of analysis. Freevays near the project site experience considerable direction flows during different periods of the day. Ior instance, northbound and westbound travel is heavier in the AM peak hour, while the opposite directions of travel are more congested during the PM peak hour, weekday pre-event peall hour, and weekend pre-event peak hour. The Friday post-event time period is the only one of the five fime periods that does not have an analyzed freeway segment operating below LOS D.

FREEWAY TABLE $\&$ FORTHCOMING (PENDING RESOLUTION OF SCOPE WITHCI)

Neighborhood Streets

The City of Inglewood collected weekday and weekend 24 -hour counts on 28 neighborhood street segments near the project site, which are shown on Figure 3.14-6. Table 3.14-9 displays these counts.

TAble 3.14-9 Neighborhood Street Segment Traffic Volumes - Existing Conditions			
Segment	Functional Class	Friday ADT ${ }^{1}$	Saturday ADT ${ }^{1}$
Hardy Street, west of Prairie Avenue	Collector	5,065	3,864
97 th Street, west of Prairie Avenue	Local	1,019	959
99 hh Street, west of Prairie Aveme	Local	1,146	1,035
101st Street, west of Prairie Avenue	Local	1,137	966
102 nd Street, west of Prairie Avenue	Local	1,814	1,250
102 nd Street, between Prairie Avenue and Doty Avenue	Local	5,661	4,099
102 nd Street, between Doty Avenue and Yukon Avenue	Local	4,606	3,101
103 rd Street, west of Prairie Avenue	Local	1,042	598
104th Street, west of Prairie Avenue	Collector	3,867	3,598
104th Street, between Prairie Avenue and Doty Avenue	Collector	5,967	5,511
104 th Street, between Doty Avenue and Yukon Avenue	Collector	5,357	5,033
104th Street, east of Dixon Avenue	Collector	9,001	7,572
105th. Street, between Prairie Avenue and Doty Avenue	Local	1,391	1,142
106 h Street, between Prairie Avenue and Dory Avenue	Local	1,406	1,373
107th Street, between Prairie Avenue and Doty Avenue	Local	909	1,623
108th. Street, between Prainie Avenue and Doty Avenue	Collector	4,434	3,764
109 th Street, between Yukon Avenue and Lemoli Avenue	Local	2,898	2,169
Myrtle Avenue, north of Century Boulevard	Collector	4,355	3,619
Flower Street, north of Century Boulevard	Local	2.727	2,602
Freeman Avenue, south of Century Boulevard	Collector	4,010	3,210
Doty Avenue, south of 102nd Street	Collector	2,244	1,928
Doty Avenue, south of 104th Street	Collector	1,945	1,651
Doty Avenue, south of 109th Street	Collector	2,453	1,996
Doty Avenue, north of Imperial Highway	Collector	4,220	3,645
Yukon Avenue, south of 102 nd Street	Collector	12,593	11,044
Yukon Avenue, south of 104th Street	Collector	8,758	7,452
Yukon Averme, south of 109 th Street	Collector	6,989	5,911
Yukon Avenue, north of Imperial Highway	Collector	7,110	6,319
Notes: ${ }^{1}$ ADT represents average daily traffic (total volume in both dir SOURCE: City of Inglewood, 2018.			

Figure 3.14-6 Neighborhood Street Study Segments

Transit Network

Transit service in the immediate project vicinity consists primarily of fixed-route bus service operated by the Los Angeles County Metropolitan Transportation Authority (Metro). Metro operates the following bus routes that stop at the Prairie Avenue/Century Boulevard intersection (see Figure 3.14-7):

- Metro Line 117 -- is an east/west line that runs along Century Boulevard between the LAX City Bus Center and Lakewood Boulevard Green Line Rail Station in Downey. The line has approximately 15-20 minute headways (i.e., time between successive buses) on weekdays between 6 AM and 6:30 PM. Bus stops (including shelters) are located in both directions of Century Boulevard directly east of Prairie Avenue and directly west of Doty Avenue.
- Metro Line 211 - is a north/south line that runs along Prairie Avenue from the Redondo Beach Green Line Rail Station to downtown Inglewood. The line has 30 - to 40 -minute headways during the AM peak period, 30 - to 35 -minute headways during the PM peak period and no midday or weekend service. Bus stops (including shelters) are located in both directions of Prairie Avenue directly south of Century Boulevard. The last evening run occurs at 7 PM .
- Metro Line 212/312 - is a north/south line that runs between Hollywood \& Vine and the Hawthorne/Lennox Station. The line has 10 - to 15 -minute headways during the AM peak period, 25- to 30 -minute headways during the PM peak period and 25 - to 30 -minute headways during evening on weekend. Within the project vicinity, the line operates on Prairie Avenue and stops directly south of Century Boulevard. The last evening run occurs at approximately 1 AM.
- The Link Lennox - Lennox Shuttle/Microbus travels a loop route that starts and ends at Lennox/Firmona Station. Lennox Microbus runs primarily along Hawthome Boulevard, Yukon Avenue, Century Boulevard and $104^{\text {th }}$ Street within the study area. The line has 30-minute headways during the AM peak period, 30-minute headways during the PM peak period and 30 -minute headways during evening on Saturday. No service is available on Sunday and holidays. The route includes stops on Century Boulevard at Yukon Avenue, Doty Avenue, and Prairie Avenue.

Figure 3.14-7 Existing Transit Services

A number of other Metro bus routes operate on north-south and east-west parallel arterials to Prairie Avenue and Century Boulevard. Refer to Technical Memoranchim \#2-Supplemental Information Regarding Existing Conditions (in Appendix X) for a list and description of those lines. The bus routes along Hawthorne Boulevard (40,442 , and 740) would require a half mile walk. Lines operating along Crenshaw Boulevard and Manchester Boulevard would require a one-mile walk.

The Metro Green Line Light Rail Line operates in a generally east-west direction between the Cities of Redondo Beach and Norwalk. The Hawthorne/Lennox Station is the closest station (1.3 miles) to the project site. The Green Line Crenshaw Station is 2.3 miles from the project site. Transit riders may transfer from the Green Line to the Blue Line at the Willowbrook/Rosa Parks Station, which is five stops away from the Hawthorne/Lennox Station. The Blue Line extends southerly to the City of Long Beach and northerly into Downtown Los Angeles.

The Metro Green Line operates on weekdays, Saturdays, Sundays, and holidays from approximately 4 AM until midnight. On weekdays, the line has 5 - to 10 -minute headways in the AM and PM (up until 7:30 PM) peak periods. On weekday late evenings (i.e., from 9 PM to midnight), it operates on 20 -minute headways. On weekends, it operates on 15 -minute headways most of the day, and $20-$ minute headways after $8: 30 \mathrm{PM}$.

The Crenshaw/LAX Line is currently under construction. When completed, it will connect with the Aviation/LAX Green Line station and the Expo/Crenshaw Station on the Expo Line. It will feature a new station in Downtown Inglewood, approximately two miles from the project site. This new light rail extension represents an important piece of connectivity to rail transit in the region, providing quicker and more direct access into Downtown Los Angeles and cities/communities to the west such as Santa Monica and Culver City. These light rail projects are expected to be open and operational prior to the opening of the proposed arena.

Pedestrian Network

The project site is served by a robust pedestrian network. All of the streets immediately bordering the project site and most streets in the study area include sidewalks, facilitating pedestrian movement. Most sidewalks in the study area are in good condition. Marked crosswalks are present at most intersections in the study area. Pedestrian walk phases at signalized intersections are either automatically provided at the intersections or are actuated by pedestrian push-buttons. Below is a description of the pedestrian facilities on streets near the project site. Figure 3.14-8 displays the pedestrian network near the project site.

- Prairie Avenue - In the vicinity of the project, the street has continuous sidewalks with widths varying from about five to 13 feet. Sidewalks immediately adjacent to the project site are less than five feet, and adjacent to an eight-foot landscaped area that also contains signage and utilities. Striped crosswalks are provided at signalized intersections, and most curb ramps do not have truncated domes.
- Century Boulevard - Continuous sidewalks are provided on Century Boulevard, although widths vary between five and 11 feet in the vicinity of the project site. Sidewalks immediately adjacent to the project site are five feet or less, with an eight-foot landscaped area that also contains signage and utilities.
- $101^{\text {th }}$ Street - The street features five-foot sidewalks on each side of the street adjacent to an eight foot landscaped area that also contains signage and utilities.
- $102^{\text {nd }}$ Street - Sidewalks on $102^{\text {nd }}$ Street near the project site range from five to seven feet. Signage and utilities obstruct the pedestrian path of travel in several locations.

Bicycle Network

There is limited dedicated bicycle infrastructure within the study area. Class II bike lanes (onstreet lanes with appropriate striping and signage) exist in parts of Downtown Inglewood, and on Hawthome Boulevard between of $104^{\text {th }}$ Street and $111^{\text {th }}$ Street. Florence Avenue has Class II and Class III (bike routes) on portions of the street within the study area.

Other Travel Modes

In addition to the modes of travel listed above, the study area is served by taxis and transportation network companies (TNCs) such as Uber and Lyft. These services provide point-to-point travel within and outside of the study area. Paratransit, a form of on-demand transportation, is also available. These modes of travel are evaluated under 'plus project' conditions.

Parking Supply

On-street parking is prohibited on Century Boulevard and portions of Prairie Avenue within the study area. Portions of some arterials restrict parking during peak periods to provide additional vehicle capacity (i.e., parking lanes become travel lanes). On-street parallel parking is available on most local streets in the project vicinity. On some residential streets, permits are required to park during certain hours of the day.

Figure 3.14-8 Existing Pedestrian Facilities

3.14.2 Regulatory Setting

This section provides a discussion of relevant federal, state, and local regulations pertaining to transportation that may be applicable to the Proposed Project.

Federal

There are no applicable federal regulations that apply directly to the Proposed Project. However, federal regulations relating to the Americans With Disabilities Act (ADA), Title VI, and Environmental Justice relate to transit service.

State

Assembly Bill 987 (AB 987)

AB 987 was signed by Governor Jerry Brown on September 30, 2018. The bill added Section 21168.6 .8 to the Public Resources Code (PRC Section 21168.6.8) and provides for expedited
 armorel ate challenged, so long as certain requirements are met. The provisions of PRC section 21168.6 .8 are similar to the provisions of the Jobs and Economic Improvement through

Environmental Leadership Act of 2011 (AB 900; PRC sections 21178 through 21189.3), which 4. established expedited judicial review of certified Environmental Leadership Development Projects. In order to qualify for expedited judicial review under AB 987, the Proposed Project must implement a transportation demand management program that whemessableveals
 greenhouse gas emissions. Additionally, sa acondtron of apmoval of the Proposed Project the

The Proposed Project must
A. Receive Leadership in Energy and Environmental Design (LEED) gold certification for new construction within one year of the completion of the first NBA season.
B. Implement trip reduction measures including the following:
i. Implementation of a transportation demand management plan that, upon full implementation, will achieve and maintain a 15 -percent reduction in the number of vehicle trips, collectively, by attendees, employees, visitors, and customers as compared to operations absent the transportation demand management program;
ii. To accelerate and maximize vehicle trip reduction, each measure in the transportation demand management program shall be implementes as soon as feasible, so that no less than a 7.5 -percent reduction in vehicle trips is achieved and maintained by the end of the first NBA season during which an NBA team has played at the arena;

[^0]iii. A 15 -percent reduction in vehicle trips shall be achieved and maintained as soon as possible, but not later than January 1, 2030. The applicant shall verify achievement to the lead agency and the Office of Planning and Research; and
iv. If the applicant fails to verify achievement of the reduction require by clause (iii), the lead agency shall semese-impose additional feasible measures to reduce vehicle trips by 17 percent, or, if there is a rail transit line with a stop within one-quarter mile of the arena, 20 percent, by January 1, 2035.
C. Is located on an infill site.
D. Is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy for which the State Air Resources Board, pursuant to subparagraph (H) of paragraph (2) of subdivision (b) of Section 65080 of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets.

(3) Compliance with AB 987 would require the Proposed Project to result in no net additional emission of greenhouse gases, including greenhouse gas emissions from

heamanadredmamy cace whormanst.

 PM2.5 over the 10 years following the commencement of construction of the Proposed Project. Of these amounts, a minimum of 130 tons of NOx and 3 tons of PM2.5 would be achieved within
 מो

 की

Senate Bill 743 (SB 743)

Senate Bill (SB) 743, passed in 2013, requires the Califomia Governor's Office of Plamning and Research (OPR) to develop new CEQA guidelines that address traffic metrics under CEQA. As stated in the legislation, upon adoption of the new guidelines, "automobile delay, as described solely by level of service or similar measures of vehicular capacity or traffic congestion shall not be considered a significant impact on the environment pursuant to this division, except in locations specifically identified in the guidelines, if any." In December 2018, OPR published final technical guidance for implementing SB 743. ${ }^{2}$ On December 28, 2018, the Resources Agency adopted CEQA Guidelines Section 15064.3. Under this guideline, vehicle miles of travel (VMT) will be the primary metric used to identify transportation impacts. Using Section 15064.3 is optional through June 30, 2020. As of July 1, 2020, Section 15064.3 will become mandatory.

[^1]In response to SB 743 , the California Department of Transportation (Caltrans) issued interim guidance ${ }^{3}$ which refocuses Caltrans Local Development-Intergovernmental Review program attention away from vehicle delay and to local development projects' VMT, appropriate transportation demand measures (TDM), and addressing multimodal operational issues. The City of Inglewood has not opted into SB 743. Although SB 743 is currently optional, this chapter contains a comprehensive analysis of the project's VMT.

Regional

Congestion Management Plan for Los Angeles County

The Los Angeles County Metropolitan Transportation Authority (Metro) administers the Congestion Management Program (CMP). The CMP is a State-mandated program designed to provide comprehensive long-range traffic planning on a regional basis. On October 28, 2010, the Metro Board adopted the 2010 CMP for Los Angeles County. ${ }^{4}$ The 2010 CMP summarizes the results of 18 years of CMP highway and transit monitoring and 15 years of monitoring local growth. CMP implementation guidelines for local jurisdictions are also contained in the 2010 CMP, and includes a hierarchy of highways and roadways with minimum level of service standards, transit standards, a trip reduction and travel demand management element, a program to analyze the impacts of local land use decisions on the regional transportation system, a sevenyear capital improvement program, and a county wide computer model used to evaluate traffic congestion and recommend relief strategies and actions. The primary goal of the CMP is to reduce traffic congestion in order to enhance the economic vitality and quality of life for affected communities. CMP guidelines require the evaluation of freeway segments to which a project could add 150 or more trips in each direction during peak hours and require evaluation of designated CMP roadway intersections to which a project could add 50 or more trips during either the AM or PM peak hours. The guidelines also require evaluation of the public transit system serving the project area.

The CMP was one of the pioneering efforts to conduct performance-based planning. Because the CMP primarily uses LOS to assess congestion, however, it is inconsistent with the direction of SB 743 which requires use of VMT-related performance measures for determining CEQA impacts. SB 743 and other state laws that have been enacted over the last decade are intended to, among other things, address climate change and support infill development and sustainable transportation. Metro, like other lead agencies, is developing new ways to measure transportation system performance. These are among the reasons that Metro has initiated a process that could lead to its opting out of the CMP, as permitted by the original legislation. Metro initiated this

[^2]process on June 20,2018. No definite timeline has been established for completing this process. For this reason, the analysis presented below follows the procedures that are currently in effect. ${ }^{5}$

Southern California Association of Governments 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy

In April 2016, the Southem California Association of Governments (SCAG) adopted the 2016 2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS). ${ }^{6}$ The 2016$2040 \mathrm{RTP} / \mathrm{SCS}$ presents a long-term vision for the region's transportation system through the year 2040 and identifies mobility, accessibility, sustainability, and high quality of life as the principles most critical to the future of the region. Furthermore, it balances the region's future mobility and housing needs with economic, environmental, and public health goals. As stated in the 2016-2040 RTP/SCS, Califomia Senate Bill (SB) 375 requires SCAG and other Metropolitan. Planning Organizations (MPOs) throughout the state to develop a Sustainable Communities Strategy to reduce per capita GHG emissions through integrated transportation, land use, housing, and environmental planning. Within the $2016-2040 \mathrm{RTP} / \mathrm{SCS}$, the overarching strategy includes plans for High Quality Transit Areas (HQTAs), Livable Corridors, and Neighborhood Mobility Areas as key features of a thoughtfully planned, maturing region in which people benefit from increased mobility, more active lifestyles, increased economic opportunity, and an overall higher quality of life. HQTAs are described as areas within 0.5 mile of a fixed guideway transit stop or a bus transit corridor with 15 -minute or less service frequency during peak commute hours. Local jurisdictions are encouraged to focus housing and employment growth within HQTAs. The Project Site is located within an HQTA as designated by the $2016-2040$ RTP/SCS ${ }^{7,8}$

Local

City of Inglewood General Plan Circulation Element

The Circulation Element of the City of Inglewood General Plan ${ }^{9}$ identifies the system of freeways, major and minor arterials, and collector streets needed to carry traffic within and through the community. The primary purpose of the Circulation Element as stated within the Circulation Element is to require that the provision of adequate street access and traffic capacity is considered for current and future land use needs. The Circulation Element also describes transit services within Inglewood, and designates truck routes and bicycle routes throughout the City.

[^3]The San Diego Freeway (Interstate 405) travels through the western portion of the City and the Century Freeway (Interstate 105) travels along the southem edge of the City. The Circulation Element defines the following classifications of streets:

- Major Arterials -- Major arterials are the most important surface streets, functioning as primary intercity routes and collecting and distributing a large portion of local traffic. Major arterials are typically designed to carry over 30,000 vehicles per day with a minimum of two travel lanes in each direction and a separate median lane to accommodate left-turn movement.
- Minor Arterials - Minor arterials, also referred to as secondary arterials, are similar to major arterials except that they may be discontinuous within the City and may carry less traffic volume. Minor arterials are typically designed to carry 15,000 to 30,000 vehicles per day with a minimum of two travel lanes in each direction. A separate median lane to accommodate left-turn movement is desirable if there is sufficient roadway width.
- Collectors - Collectors are transitional streets between arterials and local streets, collecting vehicles from the local street system and transporting them to the arterial system. Collectors may also provide cross-city access. Collectors may be designed to carry up to 15,000 vehicles per day, although 3,000 to 10,000 vehicles is more typical. Collectors will have at least one travel lane in each direction, although two travel lanes may be utilized depending upon volume and function.

Impacts and Mitigation Measures

Impact 3.14-1: Implementation of the Proposed Project could/would... [This impact statement should state what the impact could/would be, but should not necessarily parrot the standard of significance. Do not make a significance conclusion in this statement.]

The discussion summarizes the impact of construction and operation of the proposed project as described in Chapter 2, Project Description. A significance conclusion specific to the project will be drawn and indicated in bold.
[If you say, "there would be a less-than-significant impact," please use hyphens; if you say, "the impact would be less than significant," do not use hyphens.]

Mitigation Measures

Mitigation Measure 3.14-1 [Mitigation measure number should match the impact statement number]

Text of the mitigation measure goes here. Be specific. You need to say who does what and when. For example, "Prior to issuance of a grading permit, the project applicant andlor
contractor shall provide a plan, for approval by the City of Inglewood and the $S C A Q M D$, demonstrating that the heavy-duty (>50 horsepower) off-road vehicles to be used in the construction project, including owned, leased and subcontractor vehicles, would achieve a project wide fleet-average 20% NOx reduction and 45% particulate reduction compared to the most recent $C A R B$ fleet average at time of construction. "
a) If there are multiple parts to the mitigation measure, list them like this
b) And like this.
i. And if you really need to go to the next level, please list it like this.

Level of Significance After Mitigation: This paragraph describes how the mitigation measure(s) reduces the impact and identifies the residual level of impact in bold.

OR

Mitigation Measures
None required.

Impact 3.14-2: Implementation of the Proposed Project could/would ...

Mitigation Measures

Mitigation Measure 3.14-2 [Mitigation measure number should match the impact statement number]

Text of the mitigation measure goes here. Be specific. You need to say who does what and when. For example, "Prior to issuance of a grading permit, the project applicant andlor contractor shall provide a plan, for approval by the City of Inglewood and the SCAQMD, demonstrating that the heavy-duty >50 horsepower) off-road vehicles to be used in the construction project, including owned, leased and subcontractor vehicles, would achieve a project wide fleet-average 20% NOx reduction and 45% particulate reduction compared to the most recent CARB fleet average at time of construction. "
a) If there are multiple parts to the mitigation measure, list them like this
b) And like this.
i. And if you really need to go to the next level, please list it like this.

Level of Significance After Mitigation: This paragraph describes how the mitigation measure(s) reduces the impact and identifies the residual level of impact in bold.

OR

Mitigation Measures
None required.
[PAGE]

Cumulative Impacts

Prior to jumping into the cumulative analysis, you need to describe the cumulative context. Is the context geographic such as the City of Inglewood, the SCAG planning area, under the LAX flightpath? Is the context resource-oriented like the air basin, watershed, or geologic unit? You may also have different contexts for each type of impact, depending on what your impact statements are. Describe all contexts here.

There should be a cumulative impact for each project-specific significant or less-than-significant impact listed in your section. If you have four project-specific impact statements, you should have four cumulative impact statements. If you believe that the project impact is not inherently cumulative, please discuss this with Brian, Christina, or Addie. However, this is not usually the case, so please be mindful.

Impact 3.14-X: Implementation of the Proposed Project, in combination with other development, would contribute to cumulative ...

The framework should be: (1) Will this project, along with past, present, and reasonably probable future projects, have a significant impact? (2) If so, will the project's contribution be cumulatively considerable? As to the latter question, first analyze the contribution without mitigation, then analyze whether/how mitigation will affect the significance finding.

Step 1: Will this Proposed Project, along with past, present, and reasonably probable future projects, have a significant impact?

- Answer this question and measure against the established threshold of significance.
- If no, then conclude the cumulative impact is less than significant. Bold your conclusion. You are done with the analysis.
- If yes, then say there is a potential cumulative impact. Do not bold this text. Move to Step 2.

Step 2: Will the Proposed Project's contribution be cumulatively considerable?

- If no, say the Proposed Project's contribution would be less-than-cumulatively considerable. Then conclude the cumulative impact is less than significant and bold this conclusion. You are done with the analysis.
- If yes, then the project's contribution is cumulatively considerable. Therefore, the cumulative impact is potentially significant. Bold this conclusion.
- Identify mitigation. The mitigation should be focused only on reducing the Proposed Project's contribution.
- Explain whether this mitigation would reduce the impact to a less-than-significant level.
- If no, the cumulative impact is significant and unavoidable.

If yes, the cumulative impact would be less than significant.

Mitigation Measures

Mitigation Measure 3.14-X

Mitigation measure presented in italics and numbered to match the impact number. Text of the mitigation measure goes here. Be specific. You need to say who does what and when.

Level of Significance After Mitigation: This paragraph describes how the mitigation measure(s) reduces the impact and identifies the residual level of impact in bold

OR

Mitigation Measures
None required

This page intentionally left blank

[^0]: 1 Office of the Governor, 2018. Assembly Bill 987 Signing Message. September 30. A copy of PRC Section 21168.6 .8 is contained in Appendix X of this Draft EIR

[^1]: 2 State of California, Governor's Office of Planning and Research, Technical Advisory on Evaluating Transportation Impacts in CEQA, December 2018. Accessed at http://opr.ca.gov/docs/20190122-743_Technical_Advisory.pdf, March 7, 2019.

[^2]: 3 California trans, Local Development-Intergovernmental Review Program Interim Guidance, Revised November 9, 2016. Accessed at http://www.dot.ca.gov/hq/tpp/sb743.html, March 6, 2019.

 4 Los Angeles County Metropolitan Transportation Authority, 2010 Congestion Management Program. Accessed at http:///media.metro.net/projects_studies/cmp/images/CMP_Final_2010.pdf, March 6, 2019.

[^3]: 5 Congestion Management Program Opt Out. Los Angeles County Metropolitan Transportation Authority, Planning and Programming Committee, Board Report, June 20, 2018. Retrieved from https://media.metro net/docs/cmp_optOut_2018-0620.pdf, March 6, 2019.
 6 SCAG, 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy, April 2016.
 7 SCAG, 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy, April 2016, Exhibit 5.1: High Quality Transit Areas in the SCAG Region for 2040 Plan, p. 77.
 8 Los Angeles County Metropolitan Transportation Authority, "High Quality Transit Areas - Southwest Quadrant," http://media.metro.net/projects_studies/call_projects/images/Southwest\%20Quad\%20Map.pdf, accessed March 6 , 2019.
 ${ }^{9}$ City of Inglewood, Circulation Element of the Inglewood General Plan, adopted December 15, 1992

